- #1
n00by
- 7
- 0
The equation I'm trying to solve is
[itex]\frac{dy}{dx} = \frac{y^2 - 1}{x^2-1}[/itex], given y(2) = 2
The methods I'm somewhat familiar with are separation of variables, integrating factor, and exact. I tried this:
[itex]\frac{dy}{dx} = \frac{y^2 - 1}{x^2-1}[/itex]
[itex](x^2 - 1)dy = (y^2-1)dx[/itex]
[itex](x^2 - 1)dy - (y^2-1)dx= 0[/itex]
So, now it's an exact equation, right?
I tried integrating each part:
[itex]\int (x^2 - 1)dy = (x^2-1)y+c1(x)[/itex]
[itex]\int (y^2 - 1)dx = (y^2-1)x+c1(y)[/itex]
But now I'm confused what I'm supposed to do! If I just let the constants of integration be zero, then I have:
[itex](x^2-1)y[/itex]
[itex](y^2-1)x[/itex]
But what do I do with those?
I'm really confused :(
[itex]\frac{dy}{dx} = \frac{y^2 - 1}{x^2-1}[/itex], given y(2) = 2
The methods I'm somewhat familiar with are separation of variables, integrating factor, and exact. I tried this:
[itex]\frac{dy}{dx} = \frac{y^2 - 1}{x^2-1}[/itex]
[itex](x^2 - 1)dy = (y^2-1)dx[/itex]
[itex](x^2 - 1)dy - (y^2-1)dx= 0[/itex]
So, now it's an exact equation, right?
I tried integrating each part:
[itex]\int (x^2 - 1)dy = (x^2-1)y+c1(x)[/itex]
[itex]\int (y^2 - 1)dx = (y^2-1)x+c1(y)[/itex]
But now I'm confused what I'm supposed to do! If I just let the constants of integration be zero, then I have:
[itex](x^2-1)y[/itex]
[itex](y^2-1)x[/itex]
But what do I do with those?
I'm really confused :(