- #1
forumfann
- 24
- 0
Could anyone help me on this,
Is it true that for any given [itex]r_{1},r_{2},r_{3},r_{4}>0[/itex] and [itex]t_{1},t_{2},t_{3},t_{4}\in[0,2\pi)[/itex] if
[itex]r_{1}\left|\cos(t-t_{1})\right|+r_{2}\left|\cos(t-t_{2})\right|[/itex][itex]<r_{3}\left|\cos(t-t_{3})\right|+r_{4}\left|\cos(t-t_{4})\right|[/itex] for all [itex]t\in[0,2\pi)[/itex]
then [itex]r_{1}+r_{2}<r_{3}+r_{4}[/itex] ?
By the way, this is not a homework problem.
Any help will be highly appreciated!
Is it true that for any given [itex]r_{1},r_{2},r_{3},r_{4}>0[/itex] and [itex]t_{1},t_{2},t_{3},t_{4}\in[0,2\pi)[/itex] if
[itex]r_{1}\left|\cos(t-t_{1})\right|+r_{2}\left|\cos(t-t_{2})\right|[/itex][itex]<r_{3}\left|\cos(t-t_{3})\right|+r_{4}\left|\cos(t-t_{4})\right|[/itex] for all [itex]t\in[0,2\pi)[/itex]
then [itex]r_{1}+r_{2}<r_{3}+r_{4}[/itex] ?
By the way, this is not a homework problem.
Any help will be highly appreciated!
Last edited: