- #1
skrat
- 748
- 8
Homework Statement
Calculate:
a) ##\frac{d}{dx}(xJ_1(x)-\int _0^xtJ_0(t)dt)##
b) ##xJ_1(x)-\int _0^xtJ_0(t)dt##
c) let ##\xi _{k0} ## be the ##k## zero of a function ##J_0##. Determine ##c_k## so that ##1=\sum _{k=1}^{\infty }c_kJ_0(\frac{x\xi _{k0}}{2})##.
Homework Equations
The Attempt at a Solution
a) ##\frac{d}{dx}(xJ_1(x)-\int _0^xtJ_0(t)dt)=xJ_0(x)-xJ_0(x)=0##.
b) What do I do with the integral? Should I calculate ##J_n(x)=\frac{1}{\pi }\int _0^{\pi }cos(tsin\varphi -n\varphi)d\varphi ## for n=0?
c) Hmmm, no idea here :/