- #1
Clari
- 62
- 0
A car is turing round a bend of radius 100m and banking angle 15 degrees. If the coefficient of static friction between the tyres and the road is 0.1, determine the range of speeds within which the car can turn safely round the bend.
Here is what I have done:
[tex] R sin \theta + f >= \frac{mv^2}{r} [/tex]
[tex] R sin \theta + \mu R >= \frac{mv^2}{r} [/tex]
[tex] R (sin \theta + \mu) >= \frac{mv^2}{r} [/tex]
[tex] mg cos \theta ( sin \theta + \mu) >= \frac{mv^2}{r} [/tex]
[tex] v<= \sqrt{rgcos\thata (sin\theta +\mu)} [/tex]
[tex] v<= 18.6 ms^{-1} [/tex]
I don't know how to find the other one range, and the answer is 12.7 < v< 19.6...I am confused...please help..
Here is what I have done:
[tex] R sin \theta + f >= \frac{mv^2}{r} [/tex]
[tex] R sin \theta + \mu R >= \frac{mv^2}{r} [/tex]
[tex] R (sin \theta + \mu) >= \frac{mv^2}{r} [/tex]
[tex] mg cos \theta ( sin \theta + \mu) >= \frac{mv^2}{r} [/tex]
[tex] v<= \sqrt{rgcos\thata (sin\theta +\mu)} [/tex]
[tex] v<= 18.6 ms^{-1} [/tex]
I don't know how to find the other one range, and the answer is 12.7 < v< 19.6...I am confused...please help..