Solving circular motion problem

In summary: I don't know what that is.Fc is sometimes used for centripetal force. If so, I can try to make sense of the rest of the equation, which you originally posted as:Fc = Mr(theta - Oo) ^ 2 / (t - tn) ^ 2You later put that r as a subscript, but I suspect that was wrong. It's probably a radius. The equation m = Fk / (Mk(m)(g)cos(theta))? And does "Mk(m)" mean Mk multiplied by m or that Mk is a function of m? If it means multiplied by, you need to rework the
  • #1
SnoppDoge
4
0

Homework Statement



Our teacher gave us a formula to solve it by creating a computer program but the problem is I'm not good at physics. I need to know what is Fc,Mr,Fk etc..

1.) Fc = Mr(theta - Oo) ^ 2 / (t - tn) ^ 2

2.) M = Fk / Mk(m)(g)cos(theta)

Homework Equations

The Attempt at a Solution


I tried to google my formula but end up nothing so i registered here.

I already created the computer program to solve it i just assigned a value for them but i need to know what am i solving for, e.g r is the radius, m is the mass
 
Physics news on Phys.org
  • #2
SnoppDoge said:

Homework Statement



Our teacher gave us a formula to solve it by creating a computer program but the problem is I'm not good at physics. I need to know what is Fc,Mr,Fk etc..

1.) Fc = Mr(theta - Oo) ^ 2 / (t - tn) ^ 2

2.) M = Fk / Mk(m)(g)cos(theta)

Homework Equations

The Attempt at a Solution


I tried to google my formula but end up nothing so i registered here.

I already created the computer program to solve it i just assigned a value for them but i need to know what am i solving for, e.g r is the radius, m is the mass
Welcome to the PF. :smile:

Please post the exact problem statement. As you have written it out so far, we would just be guessing. Also, I've changed your thread title to be more descriptive of the problem you are asking about. Please try to use very descriptive thread titles here. Thanks.
 
  • #3
SnoppDoge said:
Our teacher gave us a formula to solve it by creating a computer program
In principle, you do not need to have any idea what the variables represent in order to write a program to solve an equation. But you do need to know which are the inputs and which are the unknowns to be calculated.
From your post, it is not entirely clear to me how many variables there are. E.g. is Mr one variable or the product of two variables, M and r? I suspect the statement of the problem given to you makes that clear, but it has been lost in the way you have typed it out. Please use subscripts and superscripts as appropriate (use the X2 and X2 buttons in the toolbar).
The Oo looks rather unlikely. Is this perhaps a Greek character? You can get theta etc. and some special symbols from the ∑ button in the toolbar.
 
  • #4
1.) Fc = Mr( - 00)2 / (t - tn)2

in number 1 it's solving for Fc <- i don't know what is Fc

2.) m = Fk / Mk(m)(g)cos(theta)

in number 2 it's solving for m

i can't find a symbol for a theta, but this is the closest symbol for theta: ∅
 
  • #5
SnoppDoge said:
in number 1 it's solving for Fc <- i don't know what is Fc
Why do you care? If you are given inputs Mr, 00 (or do you mean O0?), t and tn, it seems simple to calculate Fc. I have the feeling you have not fully explained your task.
SnoppDoge said:
in number 2 it's solving for m
Is the equation m = Fk / (Mk(m)(g)cos(theta))? And does "Mk(m)" mean Mk multiplied by m or that Mk is a function of m? If it means multiplied by, you need to rework the equation so that m only appears on one side.
 
  • #6
No Mk(m) means multiply and it's not a function of m

and what is Fc is it force? and what is m in number 2? is it mass?
 
  • #7
SnoppDoge said:
what is Fc is it force?
There is no way anyone on the Forum can tell for sure, we can only guess.
Fc is sometimes used for centripetal force. If so, I can try to make sense of the rest of the equation, which you originally posted as:
SnoppDoge said:
Fc = Mr(theta - Oo) ^ 2 / (t - tn) ^ 2
You later put that r as a subscript, but I suspect that was wrong. It's probably a radius.
The Oo could be θ0, an initial angle. The tn maybe t0, an initial time. That gives us
Fc=Mr(θ-θ0)2/(t-t0)2.
That makes sense if a (small) object mass M is rotating at distance r from an axis at constant speed and moves from an angular position θ0 at time t0 to θ at time t. The formula would give the centripetal force required.
SnoppDoge said:
what is m in number 2? is it mass?
Almost surely.
You originally posted this as
SnoppDoge said:
M = Fk / Mk(m)(g)cos(theta)
When you put in subscripts you changed it to
SnoppDoge said:
m = Fk / Mk(m)(g)cos(theta)
which resulted in the variable m appearing on both sides. I now assume you mean either ##M = \frac{F_k}{M_kmg\cos(\theta)}## or ##M = \frac{F_k}{M_k}mg\cos(\theta)##. Neither makes obvious sense. Fk smells like a force, maybe of kinetic friction. mg cos(θ) would also be a force. Not sure what M and Mk are supposed to be, but one would guess they are of the same type.
If ##M = \frac{F_k}{M_kmg\cos(\theta)}## then ##M M_k= \frac{F_k}{mg\cos(\theta)}##, making the M's dimensionless.
If ##M = \frac{F_k}{M_k}mg\cos(\theta)## then ##M M_k= F_kmg\cos(\theta)##, making the Ms also forces.
 
  • Like
Likes SnoppDoge
  • #8
haruspex said:
There is no way anyone on the Forum can tell for sure, we can only guess.
Fc is sometimes used for centripetal force. If so, I can try to make sense of the rest of the equation, which you originally posted as:

You later put that r as a subscript, but I suspect that was wrong. It's probably a radius.
The Oo could be θ0, an initial angle. The tn maybe t0, an initial time. That gives us
Fc=Mr(θ-θ0)2/(t-t0)2.
That makes sense if a (small) object mass M is rotating at distance r from an axis at constant speed and moves from an angular position θ0 at time t0 to θ at time t. The formula would give the centripetal force required.

Almost surely.
You originally posted this as

When you put in subscripts you changed it to

which resulted in the variable m appearing on both sides. I now assume you mean either ##M = \frac{F_k}{M_kmg\cos(\theta)}## or ##M = \frac{F_k}{M_k}mg\cos(\theta)##. Neither makes obvious sense. Fk smells like a force, maybe of kinetic friction. mg cos(θ) would also be a force. Not sure what M and Mk are supposed to be, but one would guess they are of the same type.
If ##M = \frac{F_k}{M_kmg\cos(\theta)}## then ##M M_k= \frac{F_k}{mg\cos(\theta)}##, making the M's dimensionless.
If ##M = \frac{F_k}{M_k}mg\cos(\theta)## then ##M M_k= F_kmg\cos(\theta)##, making the Ms also forces.
Thank you sir! and that explains my problem!
haruspex said:
Fc=Mr(θ-θ0)2/(t-t0)2

Kinetic Friction and Centripetal Force is what i need. Thanks a lot!
 

FAQ: Solving circular motion problem

What is circular motion?

Circular motion is a type of motion in which an object moves along a circular path. It involves a constant speed and a changing direction, resulting in a circular shape of the object's trajectory.

How do you solve circular motion problems?

To solve circular motion problems, you need to identify the given information, such as the radius of the circle, the speed of the object, and the mass of the object. Then, you can use equations such as centripetal force or centripetal acceleration to calculate the unknown quantities.

What is centripetal force?

Centripetal force is the force that acts on an object moving in a circular path, directed towards the center of the circle. It is responsible for keeping the object in its circular motion.

How does centripetal force affect circular motion?

Centripetal force is required for an object to maintain its circular motion. Without it, the object would continue in a straight line tangent to the circle. The magnitude of the centripetal force is directly proportional to the object's mass and the square of its speed.

What are some real-life examples of circular motion?

Some examples of circular motion include the motion of a satellite orbiting the Earth, the movement of a Ferris wheel, and the rotation of a spinning top. The motion of planets around the sun and the circular motion of athletes in gymnastics or figure skating are also examples of circular motion.

Similar threads

Replies
12
Views
2K
Replies
21
Views
2K
Replies
4
Views
2K
Replies
19
Views
3K
Replies
3
Views
2K
Replies
3
Views
2K
Back
Top