- #1
Ylle
- 79
- 0
Homework Statement
Hi...
I'm having something about the Interaction/Dirac picture.
The equation of motion, for an observable [itex]A[/itex] that doesn't depend on time in the Schrödinger picture, is given by:
[tex]\[i\hbar \frac{d{{A}_{I}}}{dt}=\left[ {{A}_{I}},{{H}_{0}} \right]\][/tex]
where:
[tex]\[{{\hat{H}}_{0}}=\hbar \omega {{\hat{a}}^{\dagger }}\hat{a}+\frac{\hbar {{\omega }_{0}}{{{\hat{\sigma }}}_{z}}}{2}\][/tex]
From this I have to commutate with [itex]\[{{\hat{\sigma }}_{+}}\][/itex], [itex]\[{{\hat{\sigma }}_{-}}\][/itex] and [itex]\[{{\hat{\sigma }}_{z}}\][/itex], where [itex]\[{{\hat{\sigma }}_{z}}\][/itex] is the last of the Pauli matrices, and [itex]\[{{\hat{\sigma }}_{\pm }}=\frac{\left( {{{\hat{\sigma }}}_{x}}\pm i{{{\hat{\sigma }}}_{y}} \right)}{2}\][/itex].
Homework Equations
?
The Attempt at a Solution
Is it just as always ? By inserting, and then just take the normal commutator, and get:
[tex]
\begin{align}
& \left[ {{\sigma }_{z}},{{H}_{0}} \right]=...=0 \\
& \left[ {{\sigma }_{+}},{{H}_{0}} \right]=...=-\hbar {{\omega }_{0}}\left[ \begin{matrix}
0 & 1 \\
0 & 0 \\
\end{matrix} \right] \\
& \left[ {{\sigma }_{-}},{{H}_{0}} \right]=...=\hbar {{\omega }_{0}}\left[ \begin{matrix}
0 & 0 \\
1 & 0 \\
\end{matrix} \right] \\
\end{align}
[/tex]
Or am I way off ?
I'm kinda stuck, so a hint would be helpfull :)
Thanks in advance.
Regards