- #1
Totalderiv
- 70
- 1
Homework Statement
Apply the eigenvalue method to find a general solution of the given system.
[tex]x_1' = 5x_1 - 9x_2[/tex]
[tex]x_2' = 2x_1 - x_2[/tex]
Homework Equations
(A-λI)v=0
The Attempt at a Solution
[tex]x_1' = 5x_1 - 9x_2[/tex]
[tex]x_2' = 2x_1 - x_2[/tex]
[tex]\left[
\begin{array}{cc}
5-λ & -9\\
2 & -1-λ
\end{array}
\right]=(5-λ)(-1-λ)+18=0[/tex]
[tex]λ^2-4λ-13=0[/tex]
[tex](λ-2)^2 -9=0[/tex]
[tex]λ=2+3i,\overline{λ}=2-3i[/tex]
So I plugged λ into the matrix;
[tex]\left[
\begin{array}{cc}
3-3i & -9\\
2 & -3-3i
\end{array}
\right]
\left[
\begin{array}{cc}
a\\
b
\end{array}
\right]=(3-3i)a-9b=0
2a-(3+3i)b=0[/tex]
This is where I'm stuck...the answer is;
[tex]x_1(t)=3e^{2t}(c_1cos2t - 5c_2sin2t)[/tex]
[tex]x_2(t)=e^{2t}[(c_1+c_2)cos3t + (c_1-c_2)sin3t)][/tex]