- #1
hotcommodity
- 436
- 0
[SOLVED] Complex Eigenvector
I need to solve for an eigenvector using the complex eigenvalue [tex] -1 + i \sqrt{11} [/tex]. I have a matrix:
[tex]A = \left(\begin{array}{cc}-3 & -5 \\3 & 1\end{array}\right)[/tex]
From the equation [tex] A \vec{V} = \lambda \vec{V} [/tex], where [tex] \vec{V} = (x, y) [/tex] I get :
[tex] -3x - 5y = -1x + i \sqrt{11}x [/tex]
[tex] 3x + y = -1y + i \sqrt{11}y [/tex]
Which gives:
[tex] -2x - i \sqrt{11}x - 5y = 0[/tex]
[tex] 3x + 2y - i \sqrt{11}y = 0 [/tex]
When I solve this system for x and y, I get a solution of (0, 0). The book agrees with the eigenvalue that I found, but has an eigenvector solution of [tex] (-2 + i \sqrt{11}, 3) [/tex]. Can anyone spot what I'm doing wrong?
Any help is appreciated.
I need to solve for an eigenvector using the complex eigenvalue [tex] -1 + i \sqrt{11} [/tex]. I have a matrix:
[tex]A = \left(\begin{array}{cc}-3 & -5 \\3 & 1\end{array}\right)[/tex]
From the equation [tex] A \vec{V} = \lambda \vec{V} [/tex], where [tex] \vec{V} = (x, y) [/tex] I get :
[tex] -3x - 5y = -1x + i \sqrt{11}x [/tex]
[tex] 3x + y = -1y + i \sqrt{11}y [/tex]
Which gives:
[tex] -2x - i \sqrt{11}x - 5y = 0[/tex]
[tex] 3x + 2y - i \sqrt{11}y = 0 [/tex]
When I solve this system for x and y, I get a solution of (0, 0). The book agrees with the eigenvalue that I found, but has an eigenvector solution of [tex] (-2 + i \sqrt{11}, 3) [/tex]. Can anyone spot what I'm doing wrong?
Any help is appreciated.