- #1
Dustinsfl
- 2,281
- 5
Consider
\[
\int_{-\infty}^{\infty}\frac{e^{iax}}{x^2 - b^2}dx
\]
where \(a,b>0\). The poles are \(x=\pm b\) which are on the x axis. Usually, if the poles are on the x axis, I use that the integral is
\[
2\pi i\sum_{\text{UHP}}\text{Res} + \pi i\sum_{\text{x axis}}\text{Res}\quad (*)
\]
which works in this problem http://mathhelpboards.com/analysis-50/integral-%3D-2pi-sum-res-uhp-pi-i-sum-res-real-axis-7576.html
However, if I use this formula on the integral above, I get the answer to be
\[
-\frac{\pi}{b}\sin(ab)
\]
when the answer is
\[
-\frac{2\pi}{b}\sin(ab)
\]
which would indicate \(2\pi i\) times the sum of the residual on the x axis. What is going wrong and when can and cannot I use the formula \((*)\)?
\[
\int_{-\infty}^{\infty}\frac{e^{iax}}{x^2 - b^2}dx
\]
where \(a,b>0\). The poles are \(x=\pm b\) which are on the x axis. Usually, if the poles are on the x axis, I use that the integral is
\[
2\pi i\sum_{\text{UHP}}\text{Res} + \pi i\sum_{\text{x axis}}\text{Res}\quad (*)
\]
which works in this problem http://mathhelpboards.com/analysis-50/integral-%3D-2pi-sum-res-uhp-pi-i-sum-res-real-axis-7576.html
However, if I use this formula on the integral above, I get the answer to be
\[
-\frac{\pi}{b}\sin(ab)
\]
when the answer is
\[
-\frac{2\pi}{b}\sin(ab)
\]
which would indicate \(2\pi i\) times the sum of the residual on the x axis. What is going wrong and when can and cannot I use the formula \((*)\)?