- #1
billybob5588
- 22
- 0
Homework Statement
I'm attempting to solve the constants that are attained after using separation of variables for a solid permeable prolate spheroidal core wrapped with N turns of wire using boundary conditions.
H[itex]^{1}_{\delta}[/itex] inside core
H[itex]^{2}_{\delta}[/itex] insulation
H[itex]^{3}_{\delta}[/itex] outside
Homework Equations
H[itex]^{1}_{\delta}[/itex] = K [itex]\Sigma[/itex][itex]^{∞}_{n=1}[/itex] B[itex]_{n}[/itex]P[itex]^{1}_{n}[/itex]([itex]\delta[/itex])P[itex]_{n}[/itex]([itex]\eta[/itex])...(1)
H[itex]^{2}_{\delta}[/itex] = K [itex]\Sigma[/itex][itex]^{∞}_{n=1}[/itex] P[itex]^{1}_{n}[/itex]([itex]\delta[/itex])C[itex]_{n}[/itex][P[itex]_{n}[/itex]([itex]\eta[/itex])+D[itex]_{n}[/itex]Q[itex]_{n}[/itex]([itex]\eta[/itex])]...(2)
H[itex]^{3}_{\delta}[/itex] = K [itex]\Sigma[/itex][itex]^{∞}_{n=1}[/itex] E[itex]_{n}[/itex]P[itex]^{1}_{n}[/itex]([itex]\delta[/itex])Q[itex]_{n}[/itex]([itex]\eta[/itex])...(3)
The conditions are:
H[itex]^{2}_{\delta}[/itex] = H[itex]^{1}_{\delta}[/itex]...(4)
H[itex]^{3}_{\delta}[/itex] - H[itex]^{2}_{\delta}[/itex] = Surface current density...(5)
The Attempt at a Solution
H[itex]^{2}_{\delta}[/itex] = H[itex]^{1}_{\delta}[/itex]
K [itex]\Sigma[/itex][itex]^{∞}_{n=1}[/itex] P[itex]^{1}_{n}[/itex]([itex]\delta[/itex])C[itex]_{n}[/itex][P[itex]_{n}[/itex]([itex]\eta[/itex])+D[itex]_{n}[/itex]Q[itex]_{n}[/itex]([itex]\eta[/itex])] = K [itex]\Sigma[/itex][itex]^{∞}_{n=1}[/itex] B[itex]_{n}[/itex]P[itex]^{1}_{n}[/itex]([itex]\delta[/itex])P[itex]_{n}[/itex]([itex]\eta[/itex])...(6)
K [itex]\Sigma[/itex][itex]^{∞}_{n=1}[/itex] cancel out also P[itex]^{1}_{n}[/itex]([itex]\delta[/itex]) are orthogonal and cancel out. Therefore left with;
C[itex]_{n}[/itex][P[itex]_{n}[/itex]([itex]\eta[/itex])+D[itex]_{n}[/itex]Q[itex]_{n}[/itex]([itex]\eta[/itex])] = B[itex]_{n}[/itex]P[itex]_{n}[/itex]([itex]\eta[/itex])
Solve for B[itex]_{n}[/itex] C[itex]_{n}[/itex] or D[itex]_{n}[/itex]?
Where do I go from here? If i sub this back into (6) doesn't get me anywhere. Unless I am missing something obvious.
Thanks,