- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{b.1.2.2a}$
$\dfrac{dy}{dt}=y-5, \quad y(0)=y_0$$\begin{array}{rll}\displaystyle
y'&=y-5\\
y'-y&=-5\\
u(x)&=\exp\int-1\, dx&= e^{-t}\\
(e^{-t}y)'&=-5e^{-t}\\
e^{-t}y&=-5\int e^{-t} dt&= -5e^{-t}+c\\
y&=-5\dfrac{e^{-t}}{e^{-t}}+\dfrac{c}{e^{-t}}&=-5e+ce^t\\
y(0)&=5+C=y_0\\
\implies C&=y_0-5\\
y&=5+(y_0-5)e^t
\end{array}$
ok I think this is correct... wasn't sure about the 5 scalar
typo's maybe :unsure:
$\dfrac{dy}{dt}=y-5, \quad y(0)=y_0$$\begin{array}{rll}\displaystyle
y'&=y-5\\
y'-y&=-5\\
u(x)&=\exp\int-1\, dx&= e^{-t}\\
(e^{-t}y)'&=-5e^{-t}\\
e^{-t}y&=-5\int e^{-t} dt&= -5e^{-t}+c\\
y&=-5\dfrac{e^{-t}}{e^{-t}}+\dfrac{c}{e^{-t}}&=-5e+ce^t\\
y(0)&=5+C=y_0\\
\implies C&=y_0-5\\
y&=5+(y_0-5)e^t
\end{array}$
ok I think this is correct... wasn't sure about the 5 scalar
typo's maybe :unsure:
Last edited: