- #1
Benny
- 584
- 0
Hi, I've been working on a difference equation and I just can't get the answer. Can someone checking my working?
[tex]
w_{n + 1} = 2w_n + 1
[/tex]
w_1 = 2w_0 + 1
w_2 = 2w_1 + 1 = 2(2w_0 + 1) + 1 = 2^2w_0 + 1 + 2^1
[tex]
\Rightarrow w_n = 2^n w_0 + \sum\limits_{i = 0}^{n - 1} {2^i } = 2^n w_0 + \sum\limits_{i = 0}^n {2^i } - 2^n = 2^n w_0 + \frac{{1 - 2^{n + 1} }}{{1 - 2}} - 2^n
[/tex]
[tex]
w_n = 2^n w_0 ' + 2^{n + 1} - 1 - 2^n = 2^n \left( {w_0 ' - 1} \right) + 2^{n + 1} - 1
[/tex]...I have written w_0 with a dash so as to enable me to get a 'nicer' looking answer. It is a little ambiguous but hopefully people understand what I've done. I've simply taken 2^n as a common factor of two of the terms so that I get 2^n multipled by something. In the next line I replace that 'thing' by w_0.
[tex]
w_n = 2^n w_0 + 2^{n + 1} - 1
[/tex]
Where I have used a primed w_0 so that I could get an answer which resembles the book's. The book's answer is the same as mine except where I have a negative one, it has a negative two. I don't know where I'm going wrong. Can someone help me out?
[tex]
w_{n + 1} = 2w_n + 1
[/tex]
w_1 = 2w_0 + 1
w_2 = 2w_1 + 1 = 2(2w_0 + 1) + 1 = 2^2w_0 + 1 + 2^1
[tex]
\Rightarrow w_n = 2^n w_0 + \sum\limits_{i = 0}^{n - 1} {2^i } = 2^n w_0 + \sum\limits_{i = 0}^n {2^i } - 2^n = 2^n w_0 + \frac{{1 - 2^{n + 1} }}{{1 - 2}} - 2^n
[/tex]
[tex]
w_n = 2^n w_0 ' + 2^{n + 1} - 1 - 2^n = 2^n \left( {w_0 ' - 1} \right) + 2^{n + 1} - 1
[/tex]...I have written w_0 with a dash so as to enable me to get a 'nicer' looking answer. It is a little ambiguous but hopefully people understand what I've done. I've simply taken 2^n as a common factor of two of the terms so that I get 2^n multipled by something. In the next line I replace that 'thing' by w_0.
[tex]
w_n = 2^n w_0 + 2^{n + 1} - 1
[/tex]
Where I have used a primed w_0 so that I could get an answer which resembles the book's. The book's answer is the same as mine except where I have a negative one, it has a negative two. I don't know where I'm going wrong. Can someone help me out?
Last edited: