- #1
Mutaja
- 239
- 0
Homework Statement
1st problem - is this correctly done?
[itex]\frac{dy}{dx}[/itex] = (##x^2## - 1) ##y^2## , y(0) = 1
2nd problem - I really need help with this one.
xy' - y = ##3x^2## , y(1) = 1
The Attempt at a Solution
1st problem:
[itex]\frac{dy}{dx}[/itex] = (##x^2## - 1) ##y^2## , y(0) = 1
[itex]\frac{1}{y^2}[/itex] dy = (##x^2## - 1) dx
##y^{-2}## dy = (##x^2## -1) dx
∫##y^{-2}## dy = (##x^2## - 1) dx
##-y^{-1}## = ([itex]\frac{x^3}{3}[/itex] - x) +c
##-1^{-1}## = c
c = -1
##-y^{-1}## = ([itex]\frac{x^3}{3}[/itex] - x) - 1.
2nd problem:
xy' - y = ##3x^2## , y(1) = 1
-y + xy' = ##3x^2##
My = -1, Nx = 1
μ(x)(-y) + μ(x)(xy') = μ(x) ##3x^2##
Am I onto something here? Any help or guidelines is highly appreciated.