- #1
jamesbob
- 63
- 0
Hey, just want to check iv done these questions right so far...
[tex] \mbox{Find the general solution to} \frac{dy}{dx} = y^2xcos(2x) \mbox{giving explicitly in terms of x.} [/tex]
[tex]\mbox{Find the particular solution satisfying y(0) = -1} [/tex]
My answer:
[tex] \frac{dy}{y^2} = x\cos(2x)dx \Rightarrow \int\frac{dy}{y^2} = \intx\cos(2x)dx [/tex]
[tex]u = x [/tex]
[tex]\frac{du}{dx} = 1 [/tex]
[tex]\frac{dv}{dx} = \cos2x [/tex]
[tex]v = \frac{1}{2}\sin(2x)} [/tex]
[tex]\Rightarrow \frac{xsinx}{2} - \frac{1}{2}\int\sin(2x) = \frac{x\sinx}{2} + \frac{1}{4}\cos(2x) + C[/tex]
So we have
[tex] \frac{-1}{y} = \frac{x\sin(x)}{2} + \frac{1}{4}\cos(2x) + C[/tex]
So
[tex] y = \frac{-4}{\cos(2x)} - \frac{2}{x\sin(2x)} + C [/tex]
[tex]\mbox{at y(0) = -1 \Rightarrow 1 = \frac{-4}{1} - \frac{2}{0} + C \Rightarrow C = 5}[/tex]
So overall,
[tex]y = \frac{-2}{x\sin(2x)} - \frac{4}{\cos(2x)} + 5}. [/tex]
[tex] \mbox{Find the general solution to} \frac{dy}{dx} = y^2xcos(2x) \mbox{giving explicitly in terms of x.} [/tex]
[tex]\mbox{Find the particular solution satisfying y(0) = -1} [/tex]
My answer:
[tex] \frac{dy}{y^2} = x\cos(2x)dx \Rightarrow \int\frac{dy}{y^2} = \intx\cos(2x)dx [/tex]
[tex]u = x [/tex]
[tex]\frac{du}{dx} = 1 [/tex]
[tex]\frac{dv}{dx} = \cos2x [/tex]
[tex]v = \frac{1}{2}\sin(2x)} [/tex]
[tex]\Rightarrow \frac{xsinx}{2} - \frac{1}{2}\int\sin(2x) = \frac{x\sinx}{2} + \frac{1}{4}\cos(2x) + C[/tex]
So we have
[tex] \frac{-1}{y} = \frac{x\sin(x)}{2} + \frac{1}{4}\cos(2x) + C[/tex]
So
[tex] y = \frac{-4}{\cos(2x)} - \frac{2}{x\sin(2x)} + C [/tex]
[tex]\mbox{at y(0) = -1 \Rightarrow 1 = \frac{-4}{1} - \frac{2}{0} + C \Rightarrow C = 5}[/tex]
So overall,
[tex]y = \frac{-2}{x\sin(2x)} - \frac{4}{\cos(2x)} + 5}. [/tex]
Last edited by a moderator: