- #1
yukcream
- 59
- 0
I want to read a bit more example on using the Riccati Method when solvng D.E, who can help me?
AKG said:
AKG said:What's the problem? For one, they give the solution right on the page, so I don't know why you think you can't do it (unless you mean that you're trying to solve it yourself and haven't looked at the answer). Second of all:
[tex]\frac{2\cos ^2(x) - \sin ^2(x) + y^2}{2\cos (x)} = \left (\frac{2\cos ^2(x) - \sin ^2(x)}{2\cos (x)}\right )y^0 + (0)y^1 + \frac{1}{2\cos (x)}y^2[/tex]
Also, I don't know why you're setting it to 0, you don't need to solve y' = 0. You have an equation for y' in terms of f and x, and you make a substitution for z to get you a linear equation which you can solve. You're given that y1 = sin(x) is a solution, so set:
[tex]z = \frac{1}{y - y_1}[/tex]
If you isolate y in that equation, then you can express y in terms of z and y1, and can even express y' in terms of z and y1. You find those expressions and substitute them into your Ricatti equation. You then perform the algebraic manipulations to isolate z', and on the right side you should end up with a linear expression. Solve for z easily, then substitute back to find y.
AKG said:I don't know if you even read the link I gave you, since if you did there should be no question as to how to solve it. You also missed the seventh sentence on that page:
"Without knowing at least one solution, there is absolutely no chance to find any solutions to such an equation."
The Riccati method is a mathematical technique for solving ordinary differential equations of the form dy/dx = f(x,y). It involves transforming the given differential equation into a Riccati equation, which can then be solved using a specific set of steps.
The Riccati method involves transforming the given differential equation into a Riccati equation, which is a non-linear first-order differential equation of the form dy/dx = P(x)y^2 + Q(x)y + R(x). This equation can then be solved using a process known as integration by parts.
The Riccati method is most commonly used for solving non-linear first-order ordinary differential equations. These can include equations with variables such as x, y, and their derivatives, as well as equations with trigonometric or exponential functions.
The Riccati method can be used to solve a wide range of non-linear first-order differential equations, making it a versatile tool for scientists and mathematicians. It also provides a systematic approach for solving these equations, making it easier to understand and apply.
While the Riccati method is a useful tool for solving non-linear first-order differential equations, it does have its limitations. It may not be applicable to higher-order differential equations or systems of differential equations. It also requires some knowledge of integration techniques and may not always yield a closed-form solution.