- #36
space-time
- 218
- 4
aleazk said:Yes, it's correct, and it's equivalent to mine (though you forgot to take the square root of sin2(Θ)). In metrics with these signatures, the definition of 'orthonormal' is with a -1 for the inner product of the e0 vector with itself (this is because this vector is timelike). Also, you don't need that -1 in the components, it's just a +1 (the vector is future directed). Second, be careful with the notation: the metric is a purely dual tensor, i.e., you contract it with tangent vectors, not dual vectors like dΘ. If you want to use the dual basis given by the dΘs, etc., you need to contract with the inverse metric then. I actually used the dual basis, and that's why the result looks different. But the dual basis to the tangent vector basis you got, is the basis (of the dual space) I got previously.
If you want to use this to calculate curvature, you will have to study the method (the so called 'tetrad method'). You can find it in Wald's or Carroll's textbooks.
As for the units, I have not followed the discussion here. In my case, I use the normal practice of taking G= 1 and c=1. After I finish the calculation, I insert the adecuate factors in order to get the right units. You can find the details of this in appendix F of Wald.
Thank you. Do you know where I can find Wald's textbook or have a link that you can post by any chance?