- #1
iScience
- 466
- 5
$$\epsilon=IR+V_C$$
$$\epsilon=IR+\frac{Q}{C}$$
$$\frac{dQ}{dt}=\frac{\epsilon-Q/C}{R}$$
$$\int\frac{dQ}{C\epsilon-Q}=\int\frac{dt}{RC}$$
$$-ln(\frac{\epsilon C-Q}{\epsilon C})=\frac{t}{RC}$$
in previous step I am confused as to why the εC is in the denominator.
if we have $$\int\frac{1}{x-2}dx$$
the answer is $$ln(x-2)$$
theres no denominator, so where is the one in the derivation popping up from?
$$\epsilon=IR+\frac{Q}{C}$$
$$\frac{dQ}{dt}=\frac{\epsilon-Q/C}{R}$$
$$\int\frac{dQ}{C\epsilon-Q}=\int\frac{dt}{RC}$$
$$-ln(\frac{\epsilon C-Q}{\epsilon C})=\frac{t}{RC}$$
in previous step I am confused as to why the εC is in the denominator.
if we have $$\int\frac{1}{x-2}dx$$
the answer is $$ln(x-2)$$
theres no denominator, so where is the one in the derivation popping up from?