- #1
juantheron
- 247
- 1
$\displaystyle \int \frac{\ln\left(x^2+2\right)}{(x+2)^2}dx$
$\bf{My\; Try::}$ Given $\displaystyle \int \ln \left(x^2+2\right)\cdot \frac{1}{(x+2)^2}dx$
Using Integration by parts, we get
$\displaystyle = -\ln\left(x^2+2\right)\cdot \frac{1}{(x+2)} + 2\int \frac{x}{\left(x^2+2\right)\cdot (x+2)}dx$
Is there is any other method by which we can solve the Integral
$\displaystyle \int \frac{x}{\left(x^2+2\right)\cdot (x+2)}dx$ other then partial fraction.
Help me
Thanks
$\bf{My\; Try::}$ Given $\displaystyle \int \ln \left(x^2+2\right)\cdot \frac{1}{(x+2)^2}dx$
Using Integration by parts, we get
$\displaystyle = -\ln\left(x^2+2\right)\cdot \frac{1}{(x+2)} + 2\int \frac{x}{\left(x^2+2\right)\cdot (x+2)}dx$
Is there is any other method by which we can solve the Integral
$\displaystyle \int \frac{x}{\left(x^2+2\right)\cdot (x+2)}dx$ other then partial fraction.
Help me
Thanks