- #1
ProPatto16
- 326
- 0
Homework Statement
Use stokes theorem to find double integral curlF.dS where S is the part of the sphere x2+y2+z2=5 that lies above plane z=1.
F(x,y,z)=x2yzi+yz2j+z3exyk
Homework Equations
stokes theorem says double integral of curlF.dS = [itex]\int[/itex]C F.dr
The Attempt at a Solution
boundary curve C is circle given by x2+y2=5, z=1.
Vector equation of c then is r(t)=[itex]\sqrt{5}[/itex]costi+[itex]\sqrt{5}[/itex]sintj+1k where 0<t<2pi
then r'(t)= -[itex]\sqrt{5}[/itex]sinti+[itex]\sqrt{5}[/itex]costj
[itex]\int[/itex]CF.dr = [itex]\int[/itex]F(r(t))dotr'(t).dt
F(r(t))=([itex]\sqrt{5}[/itex]cost)2([itex]\sqrt{5}[/itex]sint)i+([itex]\sqrt{5}[/itex]sint)j+e[itex]\sqrt{5}[/itex]cost[itex]\sqrt{5}[/itex]sint
then F(r(t))dotr'(t) = [([itex]\sqrt{5}[/itex]cost)2([itex]\sqrt{5}[/itex]sint)(-[itex]\sqrt{5}[/itex]sint)]i + [([itex]\sqrt{5}[/itex]cost)([itex]\sqrt{5}[/itex]sint)]j
simplifying down and i got to
5[itex]\int[/itex]sintcost-5cos2tsin2t.dt
how do i integrate that?
Last edited: