- #1
kelvin490
Gold Member
- 228
- 3
Suppose we have two equation x1=Aeiωt + Be-iωt and x2=A*e-iωt + B*eiωt . Where A and B are complex number and A* B* are their conjugate correspondingly.
Now if we want to make x1 and x2 exactly equivalent all the time, one way to do it is to have A=B* and B=A* so that x1 and x2 are equivalent. However, if we don't do it by this approach but instead set (A-B*)eiωt=(A*-B)e-iωt, then we have ei2ωt=(A*-B)/(A-B*). I would like to ask if the A and B chosen can satisfy this criteria (even A≠B* and B≠A*), can we still say that x1 ≡ x2 ?
Another thing trouble me is if A=B* and B=A* , then ei2ωt=(A*-B)/(A-B*)=0/0 which is undefined. What causes this problem?
Now if we want to make x1 and x2 exactly equivalent all the time, one way to do it is to have A=B* and B=A* so that x1 and x2 are equivalent. However, if we don't do it by this approach but instead set (A-B*)eiωt=(A*-B)e-iωt, then we have ei2ωt=(A*-B)/(A-B*). I would like to ask if the A and B chosen can satisfy this criteria (even A≠B* and B≠A*), can we still say that x1 ≡ x2 ?
Another thing trouble me is if A=B* and B=A* , then ei2ωt=(A*-B)/(A-B*)=0/0 which is undefined. What causes this problem?
Last edited: