A Solving Equation 15.43 Line 2 to 3 in Tevian Dray's Differential Forms

gnnmartin
Messages
86
Reaction score
5
TL;DR Summary
In 15.43 he implies dα ∧ β = β ∧ dα where α,β are one forms.
I expected dα ∧ β = −β ∧ dα. Am I misreading the text, or have I simply lost the plot?
The equality is implied in the move from equation 15.43 line 2 to line 3.

I do find Dray's book is admirably clear and absolutely says something I wish to understand, but my 78 year old brain has difficulty. However, in this case I can be precise about where I fail to follow.

Oh! I find after all, writing this has enabled me to see my mistake, but I'll post the question all the same so that some kind person can confirm where I went wrong. If α is a one form, dα is a two form, so dα ∧ β = −−β ∧ dα = β ∧ dα.
 
Physics news on Phys.org
Note that ##d\alpha## is a 2-form if ##\alpha## is a 1-form. In general, if ##\omega## and ##\eta## are ##p##- and ##q##-forms, respectively, then
$$
\omega\wedge\eta = (-1)^{p q} \eta \wedge\omega.
$$

Here you have ##p=2## and ##q=1## so ##(-1)^{p q} = (-1)^2 = +1##.

gnnmartin said:
Oh! I find after all, writing this has enabled me to see my mistake, but I'll post the question all the same so that some kind person can confirm where I went wrong. If α is a one form, dα is a two form, so dα ∧ β = −−β ∧ dα = β ∧ dα.
Indeed.
 
Thanks.
 
Comment regarding a somewhat different but related issue that someone reading this in the future might also encounter:

Note that the exterior derivative of the product ##\omega \wedge \eta## also has a potential minus sign popping up when applying the product rule:
$$
d(\omega\wedge\eta) = (d\omega) \wedge \eta + (-1)^p \omega \wedge d\eta
$$
 
Orodruin said:
Comment regarding a somewhat different but related issue that someone reading this in the future might also encounter:

Note that the exterior derivative of the product ##\omega \wedge \eta## also has a potential minus sign popping up when applying the product rule:
$$
d(\omega\wedge\eta) = (d\omega) \wedge \eta + (-1)^p \omega \wedge d\eta
$$
Thanks, yes, it was not immediately obvious to me, but given the prompt I can see it.
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...
Back
Top