Solving equation involving permutation and combination

In summary, to find n if P(n,3)=6C(n,5), we cross-multiply to get 5!n!(n-5)!=6n!(n-3)!, then simplify and solve for n to get n=8.
  • #1
NotaMathPerson
83
0
Find n if P(n, 3) = 6 C(n, 5).

My attempt

$\frac{n!}{(n-3)!}=6\frac{n!}{(n-5)5!}$

I don't know how to proceed
 
Mathematics news on Phys.org
  • #2
NotaMathPerson said:
Find n if P(n, 3) = 6 C(n, 5).

My attempt

$\frac{n!}{(n-3)!}=6\frac{n!}{(n-5)5!}$

I don't know how to proceed

First, you have an error on the right hand side. After you fix that, try dividing both sides by \(\displaystyle n!\), Think about what a factorial is.
 
  • #3
NotaMathPerson said:
Find n if P(n, 3) = 6 C(n, 5).

My attempt

$\frac{n!}{(n-3)!}=6\frac{n!}{(n-5)5!}$

I don't know how to proceed

[tex]\begin{array}{ccc}\text{We have:} & \dfrac{n!}{(n-3)!}\;=\; 6\dfrac{n!}{(n-5)5!}\\ \\
\text{Cross-multiply:} & 5!\,n!\,(n-5)! \;=\;6\,n!\,(n-3)! \\ \\
\text{Divide by 6n!:} & 20(n-5)! \;=\;(n-3)! \\ \\
\text{We have:} & 20(n-5)! \;=\;(n-3)(n-4)(n-5)! \\ \\
\text{Divide by }(n-5)! & 20 \;=\;(n-3)(n-4) \\ \\
\text{Simplify:} & n^2 - 7n - 8 \;=\;0 \\ \\
\text{Factor:} & (n+1)(n-8) \;=\;0 \\ \\
\text{Solve:} & n=\cancel{-1}.\;8
\end{array}[/tex]
 
  • #4
soroban said:

[tex]\begin{array}{ccc}\text{We have:} & \dfrac{n!}{(n-3)!}\;=\; 6\dfrac{n!}{(n-5)5!}\\ \\
\text{Cross-multiply:} & 5!\,n!\,(n-5)! \;=\;6\,n!\,(n-3)! \\ \\
\text{Divide by 6n!:} & 20(n-5)! \;=\;(n-3)! \\ \\
\text{We have:} & 20(n-5)! \;=\;(n-3)(n-4)(n-5)! \\ \\
\text{Divide by }(n-5)! & 20 \;=\;(n-3)(n-4) \\ \\
\text{Simplify:} & n^2 - 7n - 8 \;=\;0 \\ \\
\text{Factor:} & (n+1)(n-8) \;=\;0 \\ \\
\text{Solve:} & n=\cancel{-1}.\;8
\end{array}[/tex]
As http://mathhelpboards.com/members/mrtwhs/ pointed out there is a typo on the first line. It is fixed on the second line.

-Dan
 

Similar threads

Replies
1
Views
989
Replies
2
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
2
Views
2K
Replies
3
Views
1K
Replies
11
Views
1K
Back
Top