- #1
Petrus
- 702
- 0
T is a surjective linear transformation \(\displaystyle T: \mathbb{R^4}-> \mathbb{R^2}\). Decide dim ker T. How many free variables do I get if I solve equation system \(\displaystyle T(x)=y\) for a vector \(\displaystyle y \in \mathbb{R^2}\)? Construct a transformation matrix belonging to a surjective linear transformation \(\displaystyle T:\mathbb{R^4}->\mathbb{R^2}\)
My progres:
Dim ker T=\(\displaystyle 4-2=2\)
Dim ker T=free variables that mean we got 2 free variables
I'm stuck at transformation matrix
Regards,
\(\displaystyle |\pi\rangle\)
My progres:
Dim ker T=\(\displaystyle 4-2=2\)
Dim ker T=free variables that mean we got 2 free variables
I'm stuck at transformation matrix
Regards,
\(\displaystyle |\pi\rangle\)
Last edited by a moderator: