- #1
mathdad
- 1,283
- 1
Find all real solutions of the equation.
$x = \sqrt{3x + x^2 - 3\sqrt{3x + x^2}}$
Must I square each side twice to start?
$(x)^2 = [\sqrt{3x + x^2 - 3\sqrt{3x + x^2}}]^2$
$x^2 = 3x + x^2 - 3\sqrt{3x + x^2}$
$x^2 - x^2 - 3x = -3\sqrt{3x + x^2}$
$-3x = -3\sqrt{3x + x^2}$
$x = \sqrt{3x + x^2}$
$(x)^2 = [\sqrt{3x + x^2}]^2$
$x^2 = 3x + x^2$
$x^2 - x^2 = 3x$
$0 = 3x$
$0/3 = x$
$0 = x$
Is this right?
$x = \sqrt{3x + x^2 - 3\sqrt{3x + x^2}}$
Must I square each side twice to start?
$(x)^2 = [\sqrt{3x + x^2 - 3\sqrt{3x + x^2}}]^2$
$x^2 = 3x + x^2 - 3\sqrt{3x + x^2}$
$x^2 - x^2 - 3x = -3\sqrt{3x + x^2}$
$-3x = -3\sqrt{3x + x^2}$
$x = \sqrt{3x + x^2}$
$(x)^2 = [\sqrt{3x + x^2}]^2$
$x^2 = 3x + x^2$
$x^2 - x^2 = 3x$
$0 = 3x$
$0/3 = x$
$0 = x$
Is this right?
Last edited by a moderator: