- #1
JohanL
- 158
- 0
Im trying to solve the following equation
[tex]
y''(x) + \frac{y'(x)}{x} + \frac{y(x)}{x^2} = 0
[/tex]
Then with
[tex]y(x) = \sum_{i=0}^\infty a_i*x^{i+k}[/tex]
[tex]y'(x) = \sum_{i=0}^\infty a_i*(i+k)*x^{i+k-1}[/tex]
[tex]y''(x) = \sum_{i=0}^\infty a_i*(i+k)(i+k-1)*x^{i+k-2}[/tex]
I get
[tex]\sum_{i=0}^\infty a_i*(i+k)(i+k-1)*x^{i+k-2} + \sum_{i=0}^\infty a_i*(i+k)*x^{i+k-2} + \sum_{i=0}^\infty a_i*x^{i+k-2} = 0[/tex]
but how can i get a recurrence relation from this.
I need something like
[tex]a_{i+2} = f(i)*a_i[/tex]
But with only the same i+k-2 in all terms i don't know how to proceed.
[tex]
y''(x) + \frac{y'(x)}{x} + \frac{y(x)}{x^2} = 0
[/tex]
Then with
[tex]y(x) = \sum_{i=0}^\infty a_i*x^{i+k}[/tex]
[tex]y'(x) = \sum_{i=0}^\infty a_i*(i+k)*x^{i+k-1}[/tex]
[tex]y''(x) = \sum_{i=0}^\infty a_i*(i+k)(i+k-1)*x^{i+k-2}[/tex]
I get
[tex]\sum_{i=0}^\infty a_i*(i+k)(i+k-1)*x^{i+k-2} + \sum_{i=0}^\infty a_i*(i+k)*x^{i+k-2} + \sum_{i=0}^\infty a_i*x^{i+k-2} = 0[/tex]
but how can i get a recurrence relation from this.
I need something like
[tex]a_{i+2} = f(i)*a_i[/tex]
But with only the same i+k-2 in all terms i don't know how to proceed.
Last edited: