- #1
Gregg
- 459
- 0
Homework Statement
Express the determinant as a product of 4 linear factors
[itex]
\left(
\begin{array}{ccc}
a & \text{bc} & b+c \\
b & \text{ac} & a+c \\
c & \text{ab} & a+b
\end{array}
\right)[/itex]
b hence or otherwise find the values of a for which the sumultaneous equations.
[itex]
ax+2t+3z=0
[/itex]
[itex]
2x+ay+(1+a)z=0
[/itex]
[itex]
x+2ay+(2+a)z=0
[/itex]
have a solution other than x=y=z=0
ii) solve the equations when a=-3
The Attempt at a Solution
[itex]
\text{Det}\left[\left(
\begin{array}{ccc}
a & \text{bc} & b+c \\
b & \text{ac} & a+c \\
c & \text{ab} & a+b
\end{array}
\right)\right] = (a-b)(c-b)(a-c)(a+b+c)
[/itex]
I get the right answers for part 2 of 1,2,-3. I don't know why that determinant of 0 implies that solution.
for the last part i get
[itex] x=\frac{5\lambda}{3}[/itex]
[itex] y=\lambda[/itex]
[itex] z=\lambda[/itex]
[itex] r=\lambda\left(
\begin{array}{c}
\frac{5}{3} \\
1 \\
1
\end{array}
\right)[/itex]
The answer is
[itex] r = \lambda\left(
\begin{array}{c}
1 \\
0 \\
1
\end{array}
\right)[/itex] ?