- #1
Dustinsfl
- 2,281
- 5
$f(-\theta) = |\sin(-\theta)| = |-\sin\theta| = |\sin\theta| = f(\theta)$.
Hence, $f$ is even, and we need to only consider.
$$
f(\theta) = \frac{a_0}{2} + \sum_{n = 1}^{\infty}a_n\cos n\theta.
$$
$$
a_0 = \frac{1}{\pi}\int_{-\pi}^{\pi}|\sin\theta|d\theta = \frac{1}{\pi}\int_{0}^{\pi}\sin\theta d\theta - \frac{1}{\pi}\int_{-\pi}^0\sin\theta d\theta = \frac{2}{\pi}\int_{0}^{\pi}\sin\theta d\theta
$$
but when I solve this integral, I get 0.
How do I solve this integral?
$$
a_n =\frac{1}{\pi}\int_{-\pi}^{\pi}|\sin\theta|\cos n\theta d\theta = \frac{2}{\pi}\int_{-\pi}^{\pi}\sin\theta\cos n\theta d\theta
$$
Hence, $f$ is even, and we need to only consider.
$$
f(\theta) = \frac{a_0}{2} + \sum_{n = 1}^{\infty}a_n\cos n\theta.
$$
$$
a_0 = \frac{1}{\pi}\int_{-\pi}^{\pi}|\sin\theta|d\theta = \frac{1}{\pi}\int_{0}^{\pi}\sin\theta d\theta - \frac{1}{\pi}\int_{-\pi}^0\sin\theta d\theta = \frac{2}{\pi}\int_{0}^{\pi}\sin\theta d\theta
$$
but when I solve this integral, I get 0.
How do I solve this integral?
$$
a_n =\frac{1}{\pi}\int_{-\pi}^{\pi}|\sin\theta|\cos n\theta d\theta = \frac{2}{\pi}\int_{-\pi}^{\pi}\sin\theta\cos n\theta d\theta
$$