- #1
kayhm
- 7
- 0
Is there a way to solve for [tex]\pi_{H}[/tex] and [tex]\pi_{L}[/tex] which are probabilities when:
[tex]\pi_{H}[/tex] N[tex]_{H}[/tex] + [tex]\pi_{L}[/tex] N[tex]_{L}[/tex] = 1
(1 - [tex]\pi_{H}[/tex])[tex]^{M-1}[/tex] y[tex]_{H}[/tex] = k
(1 - [tex]\pi_{L}[/tex])[tex]^{M-1}[/tex] y[tex]_{L}[/tex] = k
It s ok to solve it for the limit case as N[tex]_{H}[/tex], N[tex]_{L}[/tex], and M go to infinity.
[tex]\pi_{H}[/tex] N[tex]_{H}[/tex] + [tex]\pi_{L}[/tex] N[tex]_{L}[/tex] = 1
(1 - [tex]\pi_{H}[/tex])[tex]^{M-1}[/tex] y[tex]_{H}[/tex] = k
(1 - [tex]\pi_{L}[/tex])[tex]^{M-1}[/tex] y[tex]_{L}[/tex] = k
It s ok to solve it for the limit case as N[tex]_{H}[/tex], N[tex]_{L}[/tex], and M go to infinity.