Solving for potential using surface charge density of a sphere

AI Thread Summary
The discussion focuses on calculating the electric field and potential of a charged sphere using surface charge density. The initial formulas presented for electric field strength contain errors, particularly a factor of 2 discrepancy. The correct formula for the electric field at the surface of a conductor in electrostatic equilibrium is E = σ/ε₀, while E = ρ/(2ε₀) applies to an infinite plane with uniform surface charge density. Clarification is sought regarding the appropriate use of these formulas in different contexts. Accurate understanding of these principles is crucial for solving related electrostatic problems.
BuggyWungos
Messages
13
Reaction score
1
Homework Statement
I'm trying to solve for the potential of a charged copper sphere with only radius and electric field strength known. The field lines are directed into the sphere.
Radius of the sphere: 0.2 m
Electric Field Strength at the surface of the sphere: 3800 N/C
Answer = half of my solution's value.
Relevant Equations
rho = Q/A
Surface area = 4pi(r^2)
Electric Field strength = rho/2(epsilon nought) OR kQ/r^2
Electric potential = kQ/r
surfafce area = 0.502

E = -q/A2(en) = 3800
-q = 3800*(A2(en))
-q = 1.68*10^(-8)
-q = 3.37*10^(-8)

V = kq/r
V = (9.0*10^9)(-3.37*10^(-8))/0.2
V = -1519 V
 
Physics news on Phys.org
BuggyWungos said:
Electric Field strength = rho/2(epsilon nought)
This is not the correct formula for the electric field at the surface. This is where your mistake of a factor of 2 occurs.
 
TSny said:
This is not the correct formula for the electric field at the surface. This is where your mistake of a factor of 2 occurs.
What is the correct electric field strength formula using rho? I understand that E = rho/(epsilon nought) would give the correct answer, but the formula I was given in my textbook was E = 2(pi)k(rho), which would simplify to E = rho/2(epsilon nought). Is the above formula used for another situation?
 
BuggyWungos said:
What is the correct electric field strength formula using rho? I understand that E = rho/(epsilon nought) would give the correct answer, but the formula I was given in my textbook was E = 2(pi)k(rho), which would simplify to E = rho/2(epsilon nought). Is the above formula used for another situation?
##E= \dfrac{ \sigma}{2 \varepsilon_0}## gives the field of an infinite plane with uniform surface charge density ##\sigma##. (The symbol ##\rho## is more often used for a volume charge density rather than a surface charge density.)

The field at a point just outside the surface of a conductor in electrostatic equilibrium is ##E=\dfrac{\sigma}{\varepsilon_0}##. This can be derived using Gauss’ law.
 
Last edited:
  • Like
Likes BuggyWungos
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top