- #1
KEØM
- 68
- 0
Homework Statement
Knowing that the stress and strain for an isotropic media can be related with the following expressions:
[itex]\sigma_{xx} = (\lambda + 2\mu)\varepsilon_{xx} + \lambda\varepsilon_{yy} + \lambda\varepsilon_{zz}[/itex]
[itex]\sigma_{yy} = \lambda\varepsilon_{xx} + (\lambda + 2\mu)\varepsilon_{yy}) + \lambda\varepsilon_{zz}[/itex]
[itex]\sigma_{zz} =\varepsilon_{xx}\lambda+ \lambda\varepsilon_{yy} + (\lambda + 2\mu)\varepsilon_{zz}[/itex]
Solve this system of equations for the three strain components to derive that:
[itex]\varepsilon_{xx} = \frac{2(\lambda + \mu)\sigma_{xx} - \lambda(\sigma_{yy} + \sigma_{zz})}{2\mu(3\lambda + 2\mu)}[/itex]
[itex]\varepsilon_{yy} = \frac{2(\lambda + \mu)\sigma_{yy} - \lambda(\sigma_{xx} + \sigma_{zz})}{2\mu(3\lambda + 2\mu)}[/itex]
[itex]\varepsilon_{zz} = \frac{2(\lambda + \mu)\sigma_{xx} - \lambda(\sigma_{xx} + \sigma_{yy})}{2\mu(3\lambda + 2\mu)}[/itex]
Homework Equations
[itex]\sigma_{xx} = (\lambda + 2\mu)(\varepsilon_{xx}) + \lambda\varepsilon_{yy} + \lambda\varepsilon_{zz}[/itex]
[itex]\sigma_{yy} = \lambda\varepsilon_{xx} + (\lambda + 2\mu)(\varepsilon_{yy}) + \lambda\varepsilon_{zz}[/itex]
[itex]\sigma_{zz} =(\varepsilon_{xx}) + \lambda\varepsilon_{yy} + (\lambda + 2\mu)\varepsilon_{zz}[/itex]
[itex]\sigma_{ij} = \lambda\delta{ij}\varepsilon_{kk} + 2\mu\varepsilon{ij}[/itex]
Hint: [itex] \sigma_{xx} = \sigma_{yy} [/itex] due to symmetry.
The Attempt at a Solution
Well I put the three equations into matrix and tried to carry out row reduction and I came up with the following result:
[itex]
\left[
\begin{array}{c}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{zz}
\end{array}
\right]
=
\left[
\begin{array}{ccc}
\lambda + 2\mu & \lambda & \lambda \\
\lambda & \lambda + 2\mu & \lambda \\
\lambda & \lambda & \lambda + 2\mu \\
\end{array}
\right]
\left[
\begin{array}{c}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\varepsilon_{zz}
\end{array}
\right]
[/itex]
I firstly attempted to remove the terms in the first column and the second and third rows, I did this by multiplying the top row by [itex]\frac{\lambda}{\lambda + 2\mu}[/itex] and subtracting that from the second and third rows which gave me the following matrix:
[itex]
= \left[
\begin{array}{ccc}
\lambda + 2\mu & \lambda & \lambda \\
0 & \lambda + 2\mu - \frac{\lambda^2}{\lambda + 2\mu} & \lambda - \frac{\lambda^2}{\lambda + 2\mu} \\
0 & \lambda - \frac{\lambda^2}{\lambda + 2\mu} & \lambda + 2\mu - \frac{\lambda^2}{\lambda + 2\mu}
\end{array}
\right]
[/itex]
In order to get rid of the term in the second column and the third row, I multiplied the second row by [itex] \frac{\lambda(\lambda + 2\mu) - \lambda^2}{(\lambda + 2\mu)^2 - \lambda^2}[/itex] and subtracted that row from the third row. This gave me the following matrix:
[itex]
= \left[
\begin{array}{ccc}
\lambda + 2\mu & \lambda & \lambda \\
0 & \lambda + 2\mu - \frac{\lambda^2}{\lambda + 2\mu} & \lambda - \frac{\lambda^2}{\lambda + 2\mu} \\
0 & 0 & \frac{(\lambda(\lambda + 2\mu) - \lambda^2)^2}{(\lambda + 2\mu)((\lambda + 2\mu)^2 - \lambda^2)} - \left(\lambda + 2\mu - \frac{\lambda^2}{\lambda + 2\mu}\right)
\end{array}
\right]
[/itex]
Therefore I can write my first solution out as:
[itex] \sigma_{zz} = \left(\frac{(\lambda(\lambda + 2\mu) - \lambda^2)^2}{(\lambda + 2\mu)((\lambda + 2\mu)^2 - \lambda^2)} - \left(\lambda + 2\mu - \frac{\lambda^2}{\lambda + 2\mu}\right)\right)\varepsilon_{zz}[/itex]
which doesn't appear to be right. It would be of much help if someone could show me an easier method. Perhaps Kramer's Rule but I am unfamiliar with that method. Any help will be greatly appreciated.
Thank you,
KEØM