- #1
BiGyElLoWhAt
Gold Member
- 1,623
- 131
Homework Statement
Find the green's function for y'' +4y' +3y = 0 with y(0)=y'(0)=0 and use it to solve y'' +4y' +3' =e^-2x
Homework Equations
##y = \int_a^b G*f(z)dz##
The Attempt at a Solution
##\lambda^2 + 4\lambda + 3 = 0 \to \lambda = -1,-3##
##G(x,z) = \left\{ \begin{array}{ll}
Ae^{-x} + Be^{-3x} & z<x \\
Ce^{-x} + De^{-3x} & x<z
\end{array} \right. ##
y(0) = 0 -> A=-B
y'(0) =0 -> A=B=0
continuity:
##Ce^{-z} +De^{-3z}=0 \to C = -De^{-2z}##
##-Ce^{-z} -3De^{-3z} = 1 \to [De^{-2^z}]e^{-z} - 3De^{-3z} = -2De^{-3z} = 1##
##D=-1/2e^{3z}## & ##C= 1/2e^z##
##G(x,z) = \left\{ \begin{array}{ll}
0 & z<x \\
1/2e^ze^{-x} - 1/2e^{3z}e^{-3x} & x<z
\end{array} \right. ##
The problem comes in when I go to integrate to get the solution.
##y = \int_x^{\infty} [ 1/2e^{-(x+z)} - 1/2 e^{z-3x}]dz##
The second integral is divergent in z.
Last edited by a moderator: