I Solving for the trajectory of the center of mass

AI Thread Summary
The discussion focuses on calculating the combined translational and rotational motion of a free square with mass M in the xy plane when a linear impulse J is applied above its center of mass (CM). It is acknowledged that the impulse creates both translational motion and an angular impulse, resulting in clockwise rotation due to the torque generated. The linear motion can be determined using momentum conservation principles, while the rotational motion requires consideration of the system's overall angular momentum relative to the CM. The challenge lies in accurately computing the rotational dynamics alongside the translational effects. Understanding these interactions is crucial for developing an effective physics engine in the game.
nDever
Messages
76
Reaction score
1
I'm working on the physics engine component of a game engine I'm building, and I need some guidance with this particular situation.

Consider a square with mass M that is free to translate in the xy plane and free to rotate about any axis perpendicular to the page (Fig. 1)

If a linear impulse J is applied at a point above the center of mass (CM) as shown below, I know there must be some angular impulse (momentary torque) generated since there is a component of J that is perpendicular to the displacement vector from CM. I imagine this angular impulse will tend to rotate the square clockwise.

However, I can also imagine that the CM will also undergo translation since the square is not constrained. How would I go about computing the overall rotational + translational motion of this system?
20220628_081100.jpg
 
Physics news on Phys.org
The linear motion is the easiest since overall momentum conservation gives
$$
\frac{d\vec p}{dt} = m\dot{\vec v}_{com} = \vec F_{tot}
$$
The rotational part can be slightly trickier due to the overall acceleration of the system. You should be able to do it by overall angular momentum, preferably relative to the CoM in the comoving frame.
 
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Thread 'Is 'Velocity of Transport' a Recognized Term in English Mechanics Literature?'
Here are two fragments from Banach's monograph in Mechanics I have never seen the term <<velocity of transport>> in English texts. Actually I have never seen this term being named somehow in English. This term has a name in Russian books. I looked through the original Banach's text in Polish and there is a Polish name for this term. It is a little bit surprising that the Polish name differs from the Russian one and also differs from this English translation. My question is: Is there...
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
Back
Top