- #1
BraedenP
- 96
- 0
Homework Statement
Given partitioned matrices:
[tex]A=\begin{bmatrix}
I & 0 & 0\\
C & 0 & 0\\
A & B & I
\end{bmatrix}
,A^{-1}=\begin{bmatrix}
I & 0 & 0\\
Z & I & 0\\
X & Y & I
\end{bmatrix}[/tex]
Solve for matrices Z, X, and Y
Homework Equations
N/A
The Attempt at a Solution
I started by equating the product of those partitioned matrices to a partitioned identity matrix:
[tex]\begin{bmatrix}
I & 0 & 0\\
C & 0 & 0\\
A & B & I
\end{bmatrix}
\begin{bmatrix}
I & 0 & 0\\
Z & I & 0\\
X & Y & I
\end{bmatrix}
= \begin{bmatrix}
I & 0 & 0\\
0 & I & 0\\
0 & 0 & I\end{bmatrix}[/tex]
Then My multiplying out the entries and comparing them to the expected corresponding entries in the identity matrix, I generated some equations:
[tex]C+Z=0 \to Z=-C[/tex]
[tex]A+BZ+X=0 \to X=-B(-C)-A \to X=BC-A[/tex]
[tex]B+Y=0 \to B=-Y[/tex]
Therefore:
[tex]Z=-C, X=BC-A, B=-Y[/tex]
Am I right in my method, or am I out to lunch? Hopefully I broke no rules in my multiplication of the sub-matrices..
Any advice would be appreciated.