Solving for x and k: Positive Ints

  • MHB
  • Thread starter Albert1
  • Start date
  • Tags
    Positive
In summary: I'm sorry, I don't know what you mean by "coprime" in this context. In general $8k^2-4k+1$ and $8k^2-2k$ will have a common factor $d$ given by the greatest common divisor of $8k^2-4k+1$ and $8k^2-2k$, but it is not generally true that one of those factors is equal to $d$ or that $d$ is a prime number.For example, if $k=2$ then $8k^2-4k+1=60$ and $8k^2-2k=28$. The greatest common divisor of $60
  • #1
Albert1
1,221
0
x and k are positive integers ,satisfying :

$ \text {x(x+1)=64} \text { k}^4 -48 \text{ k}^3 +16\text { k}^2-2\text{ k} $

please find x
 
Mathematics news on Phys.org
  • #2
Albert said:
x and k are positive integers ,satisfying :

$ \text {x(x+1)=64} \text { k}^4 -48 \text{ k}^3 +16\text { k}^2-2\text{ k} $

please find x

Your RHS can be factorized as $2k(4k-1)(8k^2-4k+1)$.
Trying it out for k=1, we find:
$2k(4k-1)(8k^2-4k+1) = 2 \cdot 3 \cdot 5 = 5 \cdot 6$​

So I've found $x=5$. $\qquad \blacksquare$

Found it! Phew! (Whew)
 
  • #3
ILikeSerena: you got the answer (Yes)

now I think you should point out if k>1 then x will not exist

what do you think ?
 
  • #4
$2k(4k-1)(8k^2-4k+1)=(8k^2-2k)(8k^2-4k+1) $

$\text{if} \,\, 8k^2-4k+1 < 8k^2-2k , \,\text{then}\, k>\dfrac {1}{2} $

let :

$ x=8k^2-4k+1 , \, x+1=8k^2-2k $

we have :

$ 8k^2-4k+2=8k^2-2k $

$\therefore k=1 , \, \, x=5 $
 
  • #5
I don't get it.
How do you know that x does not exist for k > 1?
 
  • #6
ILikeSerena said:
I don't get it.
How do you know that x does not exist for k > 1?
please take note of my previous post as follows :
Albert said:
[FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]8[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]8[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]8[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main])[/FONT]

[FONT=MathJax_Main]if[/FONT][FONT=MathJax_Main] 8[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main]<[/FONT][FONT=MathJax_Main]8[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Main]then [/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main]>[/FONT][FONT=MathJax_Main]1/2[/FONT]

let :

[FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]8[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]8[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math]k[/FONT]

we have :

[FONT=MathJax_Main]8[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]8[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math]k[/FONT]

[FONT=MathJax_AMS]∴[/FONT][FONT=MathJax_Math]k[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]5[/FONT]

$ 8k^2-4k+2=8k^2-2k -------------------(*) $

the only value for k satisfying (*) is k=1
 
  • #7
Albert said:
please take note of my previous post as follows :$ 8k^2-4k+2=8k^2-2k -------------------(*) $

the only value for k satisfying (*) is k=1

But how did you get $x=8k^2−4k+1$ then?
Isn't that just a try-out?
 
  • #8
Albert said:
$2k(4k-1)(8k^2-4k+1)=(8k^2-2k)(8k^2-4k+1) $

$\text{if} \,\, 8k^2-4k+1 < 8k^2-2k , \,\text{then}\, k>\dfrac {1}{2} $

let :

$ x=8k^2-4k+1 , \, x+1=8k^2-2k $

we have :

$ 8k^2-4k+2=8k^2-2k $

$\therefore k=1 , \, \, x=5 $
What this shows is that if the integer $N(k) \overset{\text{def}}{=} 64k^4 - 48k^3 + 16k^2 -2k$ is factorised as the product of the two factors $8k^2-2k$ and $8k^2-4k+1$, then the only way for those factors to differ by $1$ is if $k=1$. That still leaves open the possibility that $N(k)$ could be factorised in some different way as the product of two integers differing by $1$. So I agree with ILikeSerena that the above argument does not rule out the possibility of other solutions (though admittedly it seems unlikely that there are any).
 
  • #9
Opalg said:
So I agree with ILikeSerena that the above argument does not rule out the possibility of other solutions (though admittedly it seems unlikely that there are any).

I checked up to k=100000 with N(100000) = 6399952000159999800000.
No other solutions though.
 
  • #10
as you said my RHS can be factorized as :
$2k(4k-1)(8k^2-4k+1)=(8k^2-2k)(8k^2-4k+1)=(x+1)x$

one of the two factors (the smaller one ) must =x
and the other factor (bigger) must =x+1 (they are two consecutive positive integers)
and we can judge :
$ 8k^2-4k+1 (smaller)<8k^2-2k (bigger)$
so we set $ x=8k^2-4k+1 $
 
  • #11
Albert said:
as you said my RHS can be factorized as :
$2k(4k-1)(8k^2-4k+1)=(8k^2-2k)(8k^2-4k+1)=(x+1)x$

one of the two factors (the smaller one ) must =x
and the other factor (bigger) must =x+1 (they are two consecutive positive integers)
and we can judge :
$ 8k^2-4k+1 (smaller)<8k^2-2k (bigger)$
so we set $ x=8k^2-4k+1 $

That would only hold if one of those factors is a prime number.
In general neither is.
 
  • #12
Albert said:
as you said my RHS can be factorized as :
$2k(4k-1)(8k^2-4k+1)=(8k^2-2k)(8k^2-4k+1)=(x+1)x$

one of the two factors (the smaller one ) must =x
and the other factor (bigger) must =x+1 (they are two consecutive positive integers)
and we can judge :
$ 8k^2-4k+1 (smaller)<8k^2-2k (bigger)$
so we set $ x=8k^2-4k+1 $
I think that you are confusing algebraic factorisation with arithmetic factorisation. To take a simple example, if $f(x) = x^2+6x+5$ then $f(x)$ has only one algebraic factorisation, namely $f(x) = (x+1)(x+5)$. If you put $x=1$, then $f(1) = 12$ and the two factors $x+1$ and $x+5$ give you the factorisation $f(1) = 2\times 6$. But if you consider it arithmetically, as a number, then $12$ has other factorisations, such as $12 = 3\times 4$, which are not apparent from the algebraic factorisation of $f(x)$.

For the problem in this thread, we are looking for arithmetic factorisations, and these are much more elusive than the algebraic factorisation suggests.
 
  • #13
if we set :
$x+1=8k^2-4k+1 , x=8k^2-2k$
then k=0
this does not fit ,because x and k are positive integers

and you said :"That would only hold if one of those factors is a prime number.
In general neither is."

x or x+1 in this case one of them is a prime ,but in other case may be both of them are composite numbers ( for y=8, and y+1=9),anyway they must be coprime

that is :
$ 8k^2-4k+1 , and \,\, 8k^2-2k $ are coprime

using this trait we can find the corresponding value of k and x
 
Last edited:

FAQ: Solving for x and k: Positive Ints

1. What is the purpose of solving for x and k in positive integers?

The purpose of solving for x and k in positive integers is to find the specific values of x and k that satisfy the given equation or problem. This allows us to find the exact solution and understand the relationship between the variables in the equation.

2. What are the steps for solving for x and k in positive integers?

The steps for solving for x and k in positive integers are as follows:

  1. Identify the given equation or problem.
  2. Isolate the terms with x and k on one side of the equation.
  3. Use algebraic manipulation to simplify the equation as much as possible.
  4. Apply the rules of algebra to solve for x and k.
  5. Check your solution by plugging in the values for x and k into the original equation.

3. Can negative integers be used when solving for x and k?

No, when solving for x and k in positive integers, only positive whole numbers can be used. Negative numbers would not satisfy the condition of being positive integers.

4. What is the difference between solving for x and k separately versus simultaneously?

Solving for x and k separately means finding the value of x and the value of k one at a time, while solving simultaneously means finding both values at the same time. Solving simultaneously can often be more efficient and can provide insight into the relationship between the two variables.

5. Are there any shortcuts or tricks to solving for x and k in positive integers?

There are no specific shortcuts or tricks for solving for x and k in positive integers, but having a strong understanding of algebraic rules and properties can make the process easier. It is also important to carefully read and understand the given equation or problem before attempting to solve it.

Similar threads

Replies
8
Views
2K
Replies
2
Views
1K
Replies
7
Views
542
Replies
3
Views
996
Replies
3
Views
1K
Replies
2
Views
877
Replies
3
Views
1K
Replies
1
Views
1K
Back
Top