- #1
mmzaj
- 107
- 0
what is the solution for y in this peculiar ODE ?
[tex]A\left(y,x\right)=\frac{dy}{dx}+B(x)(1-y)[/tex]
with initial conditions :
[tex]\frac{dy}{dx}=\left0 \ldots , y=0[/tex]
[tex]\frac{dy}{dx}=\delta(x-x_{0})\ldots,y=1[/tex]
moreover
[tex]\int^{\infty}_{-\infty}Adx=\int^{\infty}_{-\infty}Bdx=1[/tex]
[tex]A\left(y,x\right)=\frac{dy}{dx}+B(x)(1-y)[/tex]
with initial conditions :
[tex]\frac{dy}{dx}=\left0 \ldots , y=0[/tex]
[tex]\frac{dy}{dx}=\delta(x-x_{0})\ldots,y=1[/tex]
moreover
[tex]\int^{\infty}_{-\infty}Adx=\int^{\infty}_{-\infty}Bdx=1[/tex]