- #1
- 668
- 68
Homework Statement
I have to find the Fourier transform of
[tex]f(x)=\frac{\beta^2}{\beta^2+x^2}[/tex]
Homework Equations
Fourier Transform is given by
[tex]F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx}f(x) dx[/tex]
The Attempt at a Solution
I'm having trouble with the integration after I separate into two integrals using partial fractions:
[tex]F(k)=\frac{\beta^2}{\sqrt{2\pi}}\int_{-\infty}^{\infty} \frac{e^{-ikx}}{\beta^2+x^2}dx[/tex]
Note
[tex]\frac{1}{\beta^2+x^2}=\frac{1}{2i\beta} \left( \frac{1}{x-i\beta} - \frac{1}{x+i\beta} \right) [/tex]
[tex]F(k)=\frac{1}{\sqrt{2\pi}} \frac{\beta}{2i} \left[ \int_{-\infty}^{\infty} \frac{e^{-ikx}}{(x-i\beta)} dx - \int_{-\infty}^{\infty} \frac{e^{-ikx}}{(x+i\beta)} dx \right][/tex]
Are there any suggestions on how to proceed?