- #1
suspenc3
- 402
- 0
Hi, IM having trouble with this topic..this is probly all wrong, but any help would be appreciated:
[tex]\int_{0}^{1} \sqrt{x^2 +1}dx[/tex]
so let
x=tanØ
dx=sec^2Ø
[tex]\sqrt{x^2+1} = \sqrt{tan^2Ø+ 1} = sec^2Ø[/tex]
when x=0 tanØ = 0 so tanØ = 0
when x=1 tanØ =[tex]\frac{\pi}{4}[/itex]
let u= cosØ
du=-sinØ
[tex]\int_{0}^{\frac{\pi}{4}} sec^2ØdØ[/tex]=
[tex]\int_{0}^{\frac{\pi}{4}} \frac{1}{cos^2Ø}dØ[/tex]=
[tex]-\int_{0}^{\frac{\pi}{4}} \frac{du}{u^2}dØ[/tex]
when Ø = 0 u = 1
when Ø = pi/4, u=root2/2
..i end up with an answer of 1-(root2/2)
[tex]\int_{0}^{1} \sqrt{x^2 +1}dx[/tex]
so let
x=tanØ
dx=sec^2Ø
[tex]\sqrt{x^2+1} = \sqrt{tan^2Ø+ 1} = sec^2Ø[/tex]
when x=0 tanØ = 0 so tanØ = 0
when x=1 tanØ =[tex]\frac{\pi}{4}[/itex]
let u= cosØ
du=-sinØ
[tex]\int_{0}^{\frac{\pi}{4}} sec^2ØdØ[/tex]=
[tex]\int_{0}^{\frac{\pi}{4}} \frac{1}{cos^2Ø}dØ[/tex]=
[tex]-\int_{0}^{\frac{\pi}{4}} \frac{du}{u^2}dØ[/tex]
when Ø = 0 u = 1
when Ø = pi/4, u=root2/2
..i end up with an answer of 1-(root2/2)
Last edited by a moderator: