Solving Integral Eq. using Fourier Transforms for Mohamed

In summary, to find the solution to the given integral equation using Fourier Transforms, first take the Fourier Transform of both sides and use the convolution property to simplify the integral. Then, use the appropriate transforms from the Fourier Transform table to solve for $\displaystyle \begin{align*} F(\omega ) \end{align*}$ and finally, do the inverse Fourier Transform to get the solution $\displaystyle \begin{align*} f(t) \end{align*}$.
  • #1
Prove It
Gold Member
MHB
1,465
24
$\displaystyle \begin{align*} f(t) \end{align*}$ satisfies the integral equation

$\displaystyle \begin{align*} f(t) + 3\int_{-\infty}^{\infty}{f(t-u)\,\mathrm{e}^{-2u}\,\mathrm{H}(u)\,\mathrm{d}u} = 15\mathrm{e}^{-2t^2} - 12t\,\mathrm{e}^{-2t^2} \end{align*}$

Find the solution to the integral equation using Fourier Transforms.

The first thing you need to do is take the Fourier Transform of both sides of the equation.

$\displaystyle \begin{align*} \mathcal{F} \left\{ f(t) + 3\int_{-\infty}^{\infty}{f(t-u)\,\mathrm{e}^{-2u} \, \mathrm{H}(u)\,\mathrm{d}u} \right\} &= \mathcal{F} \left\{ 15\mathrm{e}^{-2t^2} - 12t\,\mathrm{e}^{-2t^2} \right\} \end{align*}$

The integral you should recognise as a convolution integral:

$\displaystyle \begin{align*} \mathcal{F}\left\{ f(t) * g(t) \right\}= \mathcal{ F} \left\{ \int_{-\infty}^{\infty}{f(t-u)\,g(u)\,\mathrm{d}u} \right\} = F( \omega ) \, G( \omega ) \end{align*}$

with $\displaystyle \begin{align*} g(u) = \mathrm{e}^{-2u}\,\mathrm{H}(u) \end{align*}$.

You will also need the following transforms from your Fourier Transform table:

$\displaystyle \begin{align*} \mathcal{F} \left\{ \mathrm{e}^{-a\,t^2} \right\} &= \sqrt{ \frac{\pi}{a} } \, \mathrm{e}^{-\frac{\omega ^2}{4a}} \\ \\ \mathcal{F} \left\{ t\,\mathrm{e}^{-a\,t^2} \right\} &= -\frac{\mathrm{i}\,\sqrt{\pi}}{2a^{\frac{3}{2}}}\,\omega\,\mathrm{e}^{-\frac{\omega ^2}{4a} } \\ \\ \mathcal{F} \left\{ \mathrm{e}^{-a\,t}\,\mathrm{H}(t) \right\} &= \frac{1}{a+ \mathrm{i}\,\omega } \end{align*}$

and so now when we have taken the Fourier Transform of both sides we should get:

$\displaystyle \begin{align*} \mathcal{F} \left\{ f(t) + \int_{-\infty}^{\infty}{ f(t-u)\,\mathrm{e}^{-2u}\,\mathrm{H}(u)\,\mathrm{d}u } \right\} &= \mathcal{F} \left\{ 15\mathrm{e}^{-2t^2} - 12t\,\mathrm{e}^{-2t^2} \right\} \\ F(\omega ) + \mathcal{F} \left\{ f(t) \right\} \cdot \mathcal{ F} \left\{ \mathrm{e}^{-2t}\,\mathrm{H}(t) \right\} &= 15\,\sqrt{ \frac{\pi}{2} } \,\mathrm{e}^{ -\frac{ \omega ^2}{4 \cdot 2} } + \frac{12\, \mathrm{ i }\,\sqrt{\pi}}{2 \cdot 2^{\frac{3}{2}} } \,\omega \, \mathrm{e}^{-\frac{\omega ^2}{4\cdot 2} } \\ F( \omega ) + F( \omega ) \, \frac{1}{2 + \mathrm{i }\,\omega} &= \frac{15\,\sqrt{2\pi} }{2} \,\mathrm{e}^{-\frac{\omega ^2}{8}} + \frac{ 3\,\mathrm{i } \,\sqrt{2\pi} }{2}\,\omega \, \mathrm{e}^{-\frac{\omega ^2}{8} } \\ \left( 1 + \frac{1}{2 + \mathrm{i }\,\omega} \right)\,F(\omega ) &= \frac{ 15\,\sqrt{2\pi}}{2}\,\mathrm{e}^{-\frac{\omega ^2}{8} } + \frac{3\,\mathrm{i }\,\sqrt{2\pi}}{2}\,\omega\,\mathrm{e}^{-\frac{\omega ^2}{8}} \end{align*}$

And now it is simply a case of solving for $\displaystyle \begin{align*} F(\omega ) \end{align*}$ and doing the inverse Fourier Transform to get $\displaystyle \begin{align*} f(t) \end{align*}$, which is the solution to your equation.
 

FAQ: Solving Integral Eq. using Fourier Transforms for Mohamed

1. How are Fourier transforms used to solve integral equations?

Fourier transforms are used to convert the integral equation into an algebraic equation in the frequency domain. This allows for easier manipulation and solving of the equation.

2. What is the advantage of using Fourier transforms for solving integral equations?

The advantage of using Fourier transforms is that they can simplify complex integral equations and make them easier to solve. They also allow for the use of well-known techniques and formulas from Fourier analysis.

3. Can Fourier transforms be used for all types of integral equations?

Fourier transforms can be used for a wide range of integral equations, including those with continuous, discrete, or mixed variables. However, they may not be suitable for all types of equations, and other methods may need to be used in certain cases.

4. What is the relationship between Fourier transforms and the Fourier series?

The Fourier transform is a generalization of the Fourier series, which is used to represent periodic functions as a sum of sinusoidal functions. The Fourier transform extends this concept to non-periodic functions, allowing for a wider range of applications.

5. Are there any limitations to using Fourier transforms for solving integral equations?

While Fourier transforms are a powerful tool for solving integral equations, they do have some limitations. For example, they may not be suitable for equations with discontinuities or singularities. Additionally, they may not always provide an exact solution, and numerical methods may be needed to obtain an approximate solution.

Similar threads

Back
Top