- #1
Appleton
- 91
- 0
Homework Statement
[itex]\int \frac{1}{\sqrt{1-x^{2}}} dx[/itex]
I seem to be getting two incompatible answers when I substitute x with [itex]sin \theta[/itex] and [itex]cos \theta[/itex]. Could someone please help me with where I'm going wrong.
Homework Equations
The Attempt at a Solution
first attempt (the correct answer I believe):
[itex]let\ x = sin \theta[/itex]
[itex]dx = cos \theta\ d\theta[/itex]
[itex]\int \frac{cos \theta}{\sqrt{1-sin^{2}\theta}} d\theta[/itex]
[itex]= \int \frac{cos \theta}{\sqrt{cos^{2}\theta}} d\theta[/itex]
[itex]= \int \frac{cos \theta}{{cos\theta}} d\theta[/itex]
[itex]= \int 1\ d\theta[/itex]
[itex]= \theta[/itex]
[itex]x = sin \theta[/itex]
[itex]\theta = arcsin x[/itex]
second attempt (the wrong answer I believe)
[itex]let\ x = cos \theta[/itex]
[itex]dx = -sin \theta\ d\theta[/itex]
[itex]\int \frac{-sin \theta}{\sqrt{1-cos^{2}\theta}} d\theta[/itex]
[itex]= \int \frac{-sin \theta}{\sqrt{sin^{2}\theta}} d\theta[/itex]
[itex]= \int \frac{-sin \theta}{{sin\theta}} d\theta[/itex]
[itex]= \int -1\ d\theta[/itex]
[itex]= -\theta[/itex]
[itex]x = cos \theta[/itex]
[itex]\theta = -arccos x[/itex]