- #1
l'Hôpital
- 258
- 0
Hi, I was just wondering if these integrals could be solved analytically, or if I would just have to resort to approximations.
[tex]
\int_{0}^{\infty} \sqrt{1 + \omega E^2} E^n ln(1 + \omega E^2) \frac{e^{\phi E}}{(\lambda e^{\phi E} + 1)^2} dE
[/tex]
For
[tex]
n = 1, 1/2, 2, 3/2
[/tex]
[tex]
\int_{0}^{\infty} \sqrt{1 + \omega E^2} E^n ln(1 + \omega E^2) \frac{e^{\phi E}}{(\lambda e^{\phi E} + 1)^2} dE
[/tex]
For
[tex]
n = 1, 1/2, 2, 3/2
[/tex]