- #1
pleasehelpmeno
- 157
- 0
In trying to solve [itex]\int^{\infty}_{-\infty} x + \frac{1}{x} dx[/itex] could it be split up and solved using the Cauchy Principle Value theorem and a contour integral along a semi-circle. Thus;
[itex]PV\int^{\infty}_{-\infty}x dx =0 [/itex] [itex]+\int \frac{1}{x} dx = \int^{\pi}_{0} i d\theta [/itex]
Is this valid reasoning?
[itex]PV\int^{\infty}_{-\infty}x dx =0 [/itex] [itex]+\int \frac{1}{x} dx = \int^{\pi}_{0} i d\theta [/itex]
Is this valid reasoning?