- #1
Dustinsfl
- 2,281
- 5
\[
\frac{(s+1)^2}{s^2 - s + 1}
\]
I have simplified it down to
\[
\frac{s - \frac{1}{2} + s^2 + s + \frac{3}{2}}{(s - 1/2)^2 + \frac{3}{4}} =
e^{1/2t}\cos\Big(t\frac{\sqrt{3}}{2}\Big) + \sqrt{3}e^{1/2t}\sin\Big(t\frac{\sqrt{3}}{2}\Big) + \frac{s^2 + s}{(s - 1/2)^2 + \frac{3}{4}}
\]
but I can't figure out the last transform.
\frac{(s+1)^2}{s^2 - s + 1}
\]
I have simplified it down to
\[
\frac{s - \frac{1}{2} + s^2 + s + \frac{3}{2}}{(s - 1/2)^2 + \frac{3}{4}} =
e^{1/2t}\cos\Big(t\frac{\sqrt{3}}{2}\Big) + \sqrt{3}e^{1/2t}\sin\Big(t\frac{\sqrt{3}}{2}\Big) + \frac{s^2 + s}{(s - 1/2)^2 + \frac{3}{4}}
\]
but I can't figure out the last transform.