- #1
rdougie
- 6
- 0
Homework Statement
(a) Explain why L'Hopital's rule does not apply to the problem
lim[tex]_{x\rightarrow0}[/tex] [ (x[tex]^{2}[/tex]sin(1/x)) / sinx ]
(b) Find the limit.
Homework Equations
lim [tex]_{x\rightarrow0}[/tex] xsin(1/x) = 0 , by the Squeezing Theorem.
lim [tex]_{x\rightarrow0}[/tex] sin (1/x) Does Not Exist because it oscillates between -1 and 1.
lim [tex]_{x\rightarrow0}[/tex] x[tex]^{2}[/tex]sin(1/x) = 0 by the Squeezing Theorem.
lim[tex]_{x\rightarrow0}[/tex]sinx/x = 1
3. My attempt(s) at a solution
I wrote the original problem
lim[tex]_{x\rightarrow0}[/tex] [ (x[tex]^{2}[/tex]sin(1/x)) / sinx ]
as
lim[tex]_{x\rightarrow0}[/tex] sin (1/x) / lim[tex]_{x\rightarrow}[/tex](1/x) * lim[tex]_{x\rightarrow0}[/tex] (sinx/x).
Since the limit of the numerator doesn't exist, and lim[tex]_{x\rightarrow0}[/tex](1/x) is +[tex]\infty[/tex], and lim[tex]_{x\rightarrow0}[/tex] sinx/x = 1, then the limit of the problem doesn't exist, right?