- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $\mathbb{K}$ be a field.
Let $\mathbb{K}$ be a field.
- Find a matrix $M\in \mathbb{K}^{2\times 2}$ such that for the linear mapping $f:\mathbb{K}^2\rightarrow \mathbb{K}^2, x\mapsto Mx$ it holds that $f\neq 0$ and $f^2:=f\circ f=0$.
- Let $V$ be a $\mathbb{K}$-vector space and $\psi:V\rightarrow V$ be a linear mapping, with $\psi^k\neq 0$ and $\psi^{k+1}=0$ for some $k>0$. Show that there is an element $x\in V$ such that the set $\{x, \psi (x), \ldots , \psi^k(x)\}$ is linearly independent.
- Since $f\neq 0$ it holds that $M$ is not the zero matrix.
We have that $f^2(x):=f(f(x))=f(Mx)=MMx=M^2x$.
So, we have to find a matrix $M$ such that $M^2$ is the zero matrix.
Let $M=\begin{pmatrix}m_1&m_2 \\m_3&m_4\end{pmatrix}$.
Then we have the following:
$$M^2=0 \Rightarrow \begin{pmatrix}m_1&m_2 \\m_3&m_4\end{pmatrix}\begin{pmatrix}m_1&m_2 \\m_3&m_4\end{pmatrix}=\begin{pmatrix}0&0 \\0&0\end{pmatrix} \Rightarrow\begin{pmatrix}m_1^2+m_2m_3&m_1m_2+m_2m_4 \\m_3m_1+m_4m_3&m_3m_2+m_4^2\end{pmatrix}=\begin{pmatrix}0&0 \\0&0\end{pmatrix}$$
So, we are looking for a solution for the following system:
$$m_1^2+m_2m_3=0 \\ m_1m_2+m_2m_4=0 \Rightarrow m_2(m_1+m_4)=0\\m_3m_1+m_4m_3=0\Rightarrow m_3(m_1+m_4)=0 \\ m_3m_2+m_4^2=0$$
When we take from the second and third equation that $m_1+m_4=0 \Rightarrow m_1=-m_4$, let $m_1=-m_4=1$, then we get from the first and fourth equation that $1+m_2m_3=0\Rightarrow n_2m_3=-1$. Let $m_2=-m_3=1$.
So, we get the matrix: $$M=\begin{pmatrix}1&1 \\-1&-1\end{pmatrix}$$
Is this correct? (Wondering) - Let $x\in V$. Suppose that the set $\{x, \psi (x), \ldots , \psi^k(x)\}$ is linearly dependent, i.e., there are $c_i$'s not all zero such that $c_0x+ c_1\psi (x)+ \ldots + c_{k-1}\psi^{k-1}(x)+c_k\psi^k(x)=0$.
$$\psi (c_0x+ c_1\psi (x)+ \ldots + c_{k-1}\psi^{k-1}(x)+ c_k\psi^k(x))=\psi (0)=0 \\ (\text{ it holds that } \psi (0)=0 \text{ since it is a linear mapping, or not? }) \\ \Rightarrow c_0\psi (x)+ c_1\psi^2 (x)+ \ldots + c_{k-1}\psi^k(x)+c_k\psi^{k+1}(x)=0 \\ \Rightarrow c_0\psi (x)+ c_1\psi^2 (x)+ \ldots + c_{k-1}\psi^k(x)=0$$
Is this correct so far? How could we continue? (Wondering)
Last edited by a moderator: