MHB Solving Matrix A: Characteristic Equation and Eigenvectors

AI Thread Summary
The discussion focuses on finding the characteristic equation of a given 3x3 matrix A and its associated eigenvectors, with eigenvalues provided as -2, -2, and 1. The characteristic equation is derived from the determinant of the matrix A minus lambda times the identity matrix, set to zero. The determinant calculation involves expanding along the middle column, leading to a cubic polynomial. The final characteristic equation is expressed as (-2 - λ)(-2 - λ)(1 - λ) = 0. This process illustrates the relationship between eigenvalues, eigenvectors, and the characteristic polynomial of the matrix.
wefweff
Messages
2
Reaction score
0
good evening everyone!
Decided to solve the problems from last year's exams. I came across this example. Honestly, I didn't understand it. Who can help a young student? :)
Find characteristic equation of the matrix A in the form of the polynomial of degree of 3 (you do not need to find eigenvalues) and associated eigenvectors of the matrix. Eigenvalues of the matrix: -2, -2, 1.
А= 7 0 -3
-9 -2 3
18 0 -8
 
Mathematics news on Phys.org
$\lambda$ is an eigenvalue of matrix A if there exist some non-zero vector, v, such that $Av= \lambda v$. That is the same as $Av-\lambda v= 0$ or $(A- \lambda I)v= 0$. v= 0 is obviously a solution. In order that there be another solution $A- \lambda$ must not have an inverse. That requires that the determinant or $A- \lambda$ be 0.

Here $A= \begin{bmatrix}7 & 0 & -3 \\ -9 & -2 & 3 \\ 10 & 0 & -8 \end{bmatrix}$ so $A- \lambda I=\begin{bmatrix}7- \lambda & 0 & 3 \\ -9 & -2- \lambda & 3 \\ 18 & 0 & -8- \lambda \end{bmatrix}$.

The determinant is $\left|\begin{array}{ccc}7-\lambda & 0 & -3 \\ -9 & -2-\lambda & 3 \\ 18 & 0 & -8-\lambda \end{array}\right|$ so the characteristic equation is $|A- \lambda I|=\left|\begin{array}{ccc}7-\lambda & 0 & -3 \\ -9 & -2-\lambda & 3 \\ 18 & 0 & -8-\lambda \end{array}\right|= 0$. Since this is a 3 by 3 matrix, that will be a cubic equation.
 
Last edited:
To calculate $\left|\begin{array}{ccc} 7- \lambda & 0 & -3 \\ -9 & -2- \lambda & 3 \\ 18 & 0 & -8- \lambda \end{array}\right|$ expand on the middle column: $(-2- \lambda)\left|\begin{array}{cc} 7- \lambda & -3 \\ 18 & -8- \lambda \end{array}\right|= (-2- \lambda)((7- \lambda)(-8- \lambda)+ 54)= (-2- \lambda)(-56+ \lambda+ \lambda^2+ 54)= (-2- \lambda)(\lambda^2+ \lambda- 2)= (-2- \lambda)(-2- \lambda)(1- \lambda)$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top