- #1
Elmon
- 3
- 0
Two blocks are free to slide along a frictionless wooden track ABC as shown in Figure P9.20. The block of mass m1 = 4.93 kg is released from A. Protruding from its front end is the north pole of a strong magnet, repelling the north pole of an identical magnet embedded in the back end of the block of mass m2 = 9.60 kg, initially at rest. The two blocks never touch. Calculate the maximum height to which m1 rises after the elastic collision.
The figure shows m1 on a curved ramp at a height of 5 m.
Since it is elastic, I know energy and momentum are conserved. So I have:
(1/2)m1*v1o^2+(1/2)m2*v2o^2 = (1/2)m1*v1f^2+(1/2)m2*v2f^2
and
m1*v1o+m2*v2o = m1*v1f+m2*v2f
m2 is initially at rest, so v2o=0. Now I am not sure how I am supposed to use these to find height, or anything at all for that matter. Can anyone give me a point in the right direction?
The figure shows m1 on a curved ramp at a height of 5 m.
Since it is elastic, I know energy and momentum are conserved. So I have:
(1/2)m1*v1o^2+(1/2)m2*v2o^2 = (1/2)m1*v1f^2+(1/2)m2*v2f^2
and
m1*v1o+m2*v2o = m1*v1f+m2*v2f
m2 is initially at rest, so v2o=0. Now I am not sure how I am supposed to use these to find height, or anything at all for that matter. Can anyone give me a point in the right direction?