- #1
Mathman23
- 254
- 0
Hi
Given a power-series
[tex]\sum_{n=0} ^{\infty} \frac{2^n}{2n+1} z^{2n+1}[/tex]
if f(x), for [tex]z = x \in \mathbb{R}[/tex] is the sum of the above power series. Then show that f is solution for the differential equation
[tex]\frac{dx}{dy} - 2xy = 1[/tex]
My Solution
The generic form of this power series is [tex]f(x = z) = \sum_{n=0} ^{\infty} \frac{2^n}{2n+1} z^{2n+1}[/tex]
Therefore [tex]\frac{dx}{dy} = \frac{d}{dx}(z) = \sum_{n=0} ^{\infty} 2^n \cdot z^{2n}[/tex]
If I insert this above information into the ODE I get:
[tex]\sum_{n=0} ^{\infty} 2^n \cdot z^{2n} - 2z \sum_{n=0} ^{\infty} \frac{2^n}{2n+1} z^{2n+1} = 1[/tex]
If this is correct do I try to put it all into one sum?
Sincerley
Fred
Given a power-series
[tex]\sum_{n=0} ^{\infty} \frac{2^n}{2n+1} z^{2n+1}[/tex]
if f(x), for [tex]z = x \in \mathbb{R}[/tex] is the sum of the above power series. Then show that f is solution for the differential equation
[tex]\frac{dx}{dy} - 2xy = 1[/tex]
My Solution
The generic form of this power series is [tex]f(x = z) = \sum_{n=0} ^{\infty} \frac{2^n}{2n+1} z^{2n+1}[/tex]
Therefore [tex]\frac{dx}{dy} = \frac{d}{dx}(z) = \sum_{n=0} ^{\infty} 2^n \cdot z^{2n}[/tex]
If I insert this above information into the ODE I get:
[tex]\sum_{n=0} ^{\infty} 2^n \cdot z^{2n} - 2z \sum_{n=0} ^{\infty} \frac{2^n}{2n+1} z^{2n+1} = 1[/tex]
If this is correct do I try to put it all into one sum?
Sincerley
Fred
Last edited: