- #1
physicsjock
- 89
- 0
Hey,
I've been trying to solve this ODE using the power series method,
y'' + x^2y = 0,
I end up with (the first sum can start from 0 or 2, i just left it as starting from n=0)
[itex]\[\begin{align}
& \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n-2}}+}\sum\limits_{n=0}^{\infty }{{{a}_{n}}{{x}^{n+2}}}=0 \\
& \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n}}+}\sum\limits_{n=0}^{\infty }{{{a}_{n}}{{x}^{n+4}}}=0 \\
& \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n}}+}\sum\limits_{n=4}^{\infty }{{{a}_{n-4}}{{x}^{n}}}=0 \\
& \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n}}+}\sum\limits_{n=0}^{\infty }{{{a}_{n-4}}{{x}^{n}}}-{{a}_{-4}}{{x}^{0}}-{{a}_{-3}}x-{{a}_{-2}}{{x}^{2}}-{{a}_{-1}}{{x}^{3}}=0 \\
& By\,\,Thrm\,\,of\,\,vanishing\,\,coefficients: \\
& {{a}_{-4}}{{x}^{0}}={{a}_{-3}}x={{a}_{-2}}{{x}^{2}}={{a}_{-1}}{{x}^{3}}=0 \\
& -n(n-1){{a}_{n}}={{a}_{n-4}}\,\,\,\,\,n=4,5,6,... \\
\end{align}\]
[/itex]
but I'm having trouble getting an expression for a2n and a2n+1 since n starts at 4 there's no a2 to write a6 in terms of a0 like I am used to doing,
[itex]\begin{align}
& n(n-1){{a}_{n}}={{a}_{n-4}} \\
& {{a}_{4}}=\frac{{{a}_{0}}}{4\cdot 3},{{a}_{3}}=\frac{{{a}_{6}}}{6\cdot 5},... \\
\end{align}
[/itex]
Is there something I'm missing?
Thanks in advance
I've been trying to solve this ODE using the power series method,
y'' + x^2y = 0,
I end up with (the first sum can start from 0 or 2, i just left it as starting from n=0)
[itex]\[\begin{align}
& \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n-2}}+}\sum\limits_{n=0}^{\infty }{{{a}_{n}}{{x}^{n+2}}}=0 \\
& \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n}}+}\sum\limits_{n=0}^{\infty }{{{a}_{n}}{{x}^{n+4}}}=0 \\
& \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n}}+}\sum\limits_{n=4}^{\infty }{{{a}_{n-4}}{{x}^{n}}}=0 \\
& \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n}}+}\sum\limits_{n=0}^{\infty }{{{a}_{n-4}}{{x}^{n}}}-{{a}_{-4}}{{x}^{0}}-{{a}_{-3}}x-{{a}_{-2}}{{x}^{2}}-{{a}_{-1}}{{x}^{3}}=0 \\
& By\,\,Thrm\,\,of\,\,vanishing\,\,coefficients: \\
& {{a}_{-4}}{{x}^{0}}={{a}_{-3}}x={{a}_{-2}}{{x}^{2}}={{a}_{-1}}{{x}^{3}}=0 \\
& -n(n-1){{a}_{n}}={{a}_{n-4}}\,\,\,\,\,n=4,5,6,... \\
\end{align}\]
[/itex]
but I'm having trouble getting an expression for a2n and a2n+1 since n starts at 4 there's no a2 to write a6 in terms of a0 like I am used to doing,
[itex]\begin{align}
& n(n-1){{a}_{n}}={{a}_{n-4}} \\
& {{a}_{4}}=\frac{{{a}_{0}}}{4\cdot 3},{{a}_{3}}=\frac{{{a}_{6}}}{6\cdot 5},... \\
\end{align}
[/itex]
Is there something I'm missing?
Thanks in advance