- #1
Adlibber
- 2
- 0
I am trying to determine the optimum length of the control vectors for a cubic Bézier approximation of a $90^\circ$ circular arc. However to my limited mathematical mind the equation cannot be solved algebraically. Wolfram Alpha even finds it too complicated. However I am told that it IS solvable! I remain unconvinced.
Can anyone spot a way of simplifying this monster?
\begin{align*}
&\left(u_\mu^6+(\textstyle\frac{1}{2})^6\right)(18\kappa^2-24\kappa+8)+\left(u_\mu^5+(\textstyle\frac{1}{2})^5\right)(-54\kappa^2+72\kappa-24)+\\
&\left(u_\mu^4+(\textstyle\frac{1}{2})^4\right)(63\kappa^2-66\kappa+18)+\left(u_\mu^3+(\textstyle\frac{1}{2})^3\right)(-36\kappa^2+12\kappa-4)+\\
&\left(u_\mu^2+(\textstyle\frac{1}{2})^2\right)(9\kappa^2+6\kappa-6)=0\\
&\text{where }\;\;u_\mu=\frac{1}{2}-\frac{\sqrt{12-20\kappa-3\kappa^2}}{4-6\kappa}
\end{align*}
Can anyone spot a way of simplifying this monster?
\begin{align*}
&\left(u_\mu^6+(\textstyle\frac{1}{2})^6\right)(18\kappa^2-24\kappa+8)+\left(u_\mu^5+(\textstyle\frac{1}{2})^5\right)(-54\kappa^2+72\kappa-24)+\\
&\left(u_\mu^4+(\textstyle\frac{1}{2})^4\right)(63\kappa^2-66\kappa+18)+\left(u_\mu^3+(\textstyle\frac{1}{2})^3\right)(-36\kappa^2+12\kappa-4)+\\
&\left(u_\mu^2+(\textstyle\frac{1}{2})^2\right)(9\kappa^2+6\kappa-6)=0\\
&\text{where }\;\;u_\mu=\frac{1}{2}-\frac{\sqrt{12-20\kappa-3\kappa^2}}{4-6\kappa}
\end{align*}
Last edited: