- #1
waht
- 1,501
- 4
When simplifying this
[tex] \int d^3x' [\pi(x), \frac{1}{2}\pi^2(x') + \frac{1}{2} \phi(x')( -\nabla^2 + m^2)\phi(x')] [/tex]
we know that
[tex] [\pi(x), \pi(x')] = 0 [/tex]
[tex] [\phi(x), \pi(x')] = -i\delta(x-x') [/tex]
how does that simplify to
[tex] \int d^3x' \delta(x-x')( -\nabla^2 + m^2)\phi(x')[/tex]
I know that
[tex] [\pi(x), \pi^2(x')] = 0 [/tex]
but not sure how does the laplacian gets factored out like that and one-half disappears?
[tex] \int d^3x' [\pi(x), \frac{1}{2}\pi^2(x') + \frac{1}{2} \phi(x')( -\nabla^2 + m^2)\phi(x')] [/tex]
we know that
[tex] [\pi(x), \pi(x')] = 0 [/tex]
[tex] [\phi(x), \pi(x')] = -i\delta(x-x') [/tex]
how does that simplify to
[tex] \int d^3x' \delta(x-x')( -\nabla^2 + m^2)\phi(x')[/tex]
I know that
[tex] [\pi(x), \pi^2(x')] = 0 [/tex]
but not sure how does the laplacian gets factored out like that and one-half disappears?
Last edited: